首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
We previously showed that intradermal immunization with plasmids expressing the murine cytomegalovirus (MCMV) protein IE1-pp89 or M84 protects against viral challenge and that coimmunization has a synergistic protective effect (C. S. Morello, L. D. Cranmer, and D. H. Spector, J. Virol. 74:3696-3708, 2000). Using an intracellular gamma interferon cytokine staining assay, we have now characterized the CD8+ T-cell response after DNA immunization with pp89, M84, or pp89 plus M84. The pp89- and M84-specific CD8+ T-cell responses peaked rapidly after three immunizations. DNA immunization and MCMV infection generated similar levels of pp89-specific CD8+ T cells. In contrast, a significantly higher level of M84-specific CD8+ T cells was elicited by DNA immunization than by MCMV infection. Fusion of ubiquitin to pp89 enhanced the CD8+ T-cell response only under conditions where vaccination was suboptimal. Three immunizations with either pp89, M84, or pp89 plus M84 DNA also provided significant protection against MCMV infection for at least 6 months, with the best protection produced by coimmunization. A substantial percentage of antigen-specific CD8+ T cells remained detectable, and they responded rapidly to the MCMV challenge. These results underscore the importance of considering antigens that do not appear to be highly immunogenic during infection as DNA vaccine candidates.  相似文献   

2.
Human cytomegalovirus (HCMV) establishes a lifelong infection with the potential for reinfection or viral transmission even in the presence of strong and diverse CD8 T-lymphocyte responses. This suggests that the CMVs skew the host T-cell response in order to favor viral persistence. In this study, we hypothesized that the essential, nonstructural proteins that are highly conserved among the CMVs may represent a novel class of T-cell targets for vaccine-mediated protection due to their requirements for expression and sequence stability, but that the observed subdominance of these antigens in the CMV-infected host results from the virus limiting the T-cell responses to otherwise-protective specificities. We found that DNA immunization of mice with the murine CMV (MCMV) homologs of HCMV DNA polymerase (M54) or helicase (M105) was protective against virus replication in the spleen following systemic challenge, with the protection level elicited by the M54 DNA being comparable to that of DNA expressing the immunodominant IE1 (pp89). Intracellular gamma interferon staining of CD8 T cells from mice immunized with either the M54 or M105 DNAs showed strong primary responses that recalled rapidly after viral challenge. M54- and M105-specific CD8 T cells were detected after the primary MCMV infection, but their levels were not consistently above the background level. The conserved, essential proteins of the CMVs thus represent a novel class of CD8 T-cell targets that may contribute to a successful HCMV vaccine strategy.  相似文献   

3.
The skin is an attractive target for antigen-specific vaccination. Particle bombardment of the epidermis with plasmid DNA using the gene gun results in antigen expression in keratinocytes of the epidermis leading to antigen presentation in the draining lymph nodes by migratory dendritic cells (DC). In order to better understand the role of the skin in stimulating antigen-specific CD8+cytotoxic T cells (CTL), we compared gene gun immunization with intracutaneous injections of antigen-transduced DC. A single intracutaneous injection of antigen-transduced DC was able to induce in vivo expansion of CD8+CTL specific for the model antigen chicken ovalbumin while four simultaneous shots with the gene gun were not effective. Antigen-transduced DC were much more efficient than particle bombardment of the epidermis in stimulating adoptively transferred TCR-transgenic CD8+CTL in the draining lymph nodes. Employing the novel technique of in vivo bioluminescence imaging, we demonstrated efficient gene transfer to the skin following gene gun bombardment and confirmed that a similar amount of antigen reached the lymph node when compared with injection of antigen-transduced DC. Our results suggest that direct transfection of the skin does not optimally reach and activate appropriate antigen-presenting DC. We believe that this reflects the immunological function of the epidermis which must balance immunity and tolerance to foreign antigens. Further investigations will have to address the role of Langerhans cells for the activation of cellular immunity in the skin.  相似文献   

4.
The duration of Ag expression in vivo has been reported to have a minimal impact on both the magnitude and kinetics of contraction of a pathogen-induced CD8(+) T cell response. In this study, we controlled the duration of Ag expression by excising the ear pinnae following intradermal ear pinnae DNA immunization. This resulted in decreased magnitude, accelerated contraction and differentiation, and surprisingly greater secondary CD8(+) T cell responses. Furthermore, we found delayed and prolonged Ag presentation in the immunized mice; however, this presentation was considerably decreased when the depot Ag was eliminated. These findings suggest that the magnitude and the contraction phase of the CD8(+) T cell response following intradermal DNA immunization is regulated by the duration rather than the initial exposure to Ag.  相似文献   

5.
Recombinant modified vaccinia Ankara- and peptide-based IFN-gamma ELISPOT assays were used to detect and measure human CMV (HCMV)-specific CD8(+) T cell responses to the pp65 (UL83) and immediate early protein 1 (IE1; UL123) gene products in 16 HCMV-infected infants and children. Age at study ranged from birth to 2 years. HCMV-specific CD8(+) T cells were detected in 14 (88%) of 16 children at frequencies ranging from 60 to >2000 spots/million PBMC. Responses were detected as early as 1 day of age in infants with documented congenital infection. Nine children responded to both pp65 and IE1, whereas responses to pp65 or IE1 alone were detected in three and two children, respectively. Regardless of the specificity of initial responses, IE1-specific responses predominated by 1 year of age. Changes in HCMV epitopes targeted by the CD8(+) T cell responses were observed over time; epitopes commonly recognized by HLA-A2(+) adults with latent HCMV infection did not fully account for responses detected in early childhood. Finally, the detection of HCMV-specific CD8(+) T cell responses was temporally associated with a decrease in peripheral blood HCMV load. Taken altogether, these data demonstrate that the fetus and young infant can generate virus-specific CD8(+) T cell responses. Changes observed in the protein and epitope-specificity of HCMV-specific CD8(+) T cells over time are consistent with those observed after other primary viral infections. The temporal association between the detection of HCMV-specific CD8(+) T cell responses and the reduction in blood HCMV load supports the importance of CD8(+) T cells in controlling primary HCMV viremia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号