首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incorporation of ethanol (1.0 or 1.25 M) into exponential-phase cultures of Saccharomyces cerevisiae NCYC 366 growing anaerobically in a medium supplemented with ergosterol and an unsaturated fatty acid caused a retardation in growth rate, which was greater when the medium contained oleic rather than linoleic acid. Ethanol incorporation led to an immediate drop in growth rate, and ethanol-containing cultures grew at the slower rate for at least 10 h. Incorporation of ethanol (0.5 M) into buffered (pH 4.5) cell suspensions containing d-[6-3H] glucose, d-[1-14C] glucosamine, l-[U-14C] lysine or arginine, or KH2 32PO4 lowered the rate of solute accumulation by cells. Rates of accumulation of glucose, lysine and arginine were retarded to a greater extent when cells had been grown in the presence of oleic rather than linoleic acid. This difference was not observed with accumulation of phosphate. Ethanol was extracted from exponential-phase cells by four different methods. Cells grown in the presence of linoleic acid contained a slightly, but consistently, lower concentration of ethanol than cells grown in oleic acid-containing medium. The ethanol concentration in cells was 5–7 times greater than that in the cell-free medium.  相似文献   

2.
We studied the effect of different concentrations of 2-deoxy-d-glucose on the l-[U-14C]leucine, l-[1-14C]leucine and [1-14C]glycine metabolism in slices of cerebral cortex of 10-day-old rats. 2-deoxy-d-glucose since 0.5 mM concentration has inhibited significantly the protein synthesis from l-[U-14C]leucine and from [1-14C]glycine in relation to the medium containing only Krebs Ringer bicarbonate. Potassium 8.0 mM in incubation medium did not stimulate the protein synthesis compared to the medium containing 2.7 mM, and at 50 mM diminishes more than 2.5 times the protein synthesis compared to the other concentration. Only at the concentration of 5.0 mM, 2-deoxy-d-glucose inhibited the CO2 production and lipid synthesis from l-[U-14C] leucine. This compound did not inhibit either CO2 production, or lipid synthesis from [1-14C]glycine. Lactate at 10 mM and glucose 5.0 mM did not revert the inhibitory effect of 2-deoxy-d-glucose on the protein synthesis from l-[U-14C]leucine. 2-deoxy-d-glucose at 2.0 mM did not show any effect either on CO2 production, or on lipid synthesis from l-[U-14C]lactate 10 mM and glucose 5.0 mM.  相似文献   

3.
Anthers of Morus indica L., with microspores at the uninucleate stage were cultured; and the influence of temperature and kinetin pretreatment on induction of androgenic calluses was examined. The effects of various pretreatments revealed that 24 h cold pretreatment increased the percentage of cultures inducing callus. First microspore division was observed after 16 to 20 days of culture. Th anthers split and developed embryogenic calluses on MB medium supplemented with NAA (0.5 mg l–1 and BA (1.0 mg l–1)) using 8% sucrose. Rhizogenesis was induced on medium supplemented with NAA and BA (each 0.5 mg l–1) with reduced myo-inositol (75 mg l–1). Cytological study of induced roots confirmed the haploid nature of calluses. Different type of embryos were initiated upon transfer of calluses to medium supplemented with NAA, BA (each 0.5 mg l–1), 2,4-d (1.0 mg l–1) and PVP (600 mg l–1). These embryoids further developed roots on removal of 2,4-d from the medium and developed precociously without developing cotyledons and formed elongated shoots.Abbreviations BA 6 benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - FAA formalin: Acetic acid: Alcohol - GA3 gibberellic acid - IBA indole-3-butyric acid - MB modifed Bourgin (Qian et al., 1982) - NAA 1-naphthalene acetic acid - PVP polyvinylpyrrolidone - RFS-135 rainfed selection 135 - SE standard error  相似文献   

4.
We studied the effect of various energetic nutrients on metabolism of l-[U-14C]leucine and [1–14C]glycine in cerebral cortex of rats at different ages. At gestational age, glucose and lactate stimulated protein synthesis from l-[U-14C]leucine and [1–14C]glycine and from l-[U-14C]leucine, respectively; glucose, -OH-butyrate and lactate stimulated lipid synthesis from l-[U-14C]leucine. At 10 days of age, glucose, mannose, and fructose stimulated protein synthesis, and glucose and mannose stimulated oxidation to CO2 as well as lipid synthesis from l-[U-14C]leucine. In adult rats, glucose, mannose, and fructose stimulated protein synthesis from l-[U-14C]leucine and [1–14C]glycine; glutamine also markedly decreased the oxidation of l-[U-14C]leucine and [1–14C]glycine in 10–day-old and adult rats.  相似文献   

5.
Statistical analyses of the data revealed very significant differences in androgenesis induction ofA. carnea Hayne anther culture depending on the bud length, nutrient medium composition and age of the parental tree. Significant mutual influence of all these factors was also observed. The highest number of androgenic anthers was obtained when 4 mm long buds were used. Older trees (60 and 100 yrs) gave a higher number of androgenic anthers than the younger ones (20 and 40 yrs). MS medium supplemented with 2,4-d and Kin (1 mg l–1, each) was the most favourable for androgenesis induction. Pollen embryos (haploids and aneuploids) were formed by the division of uninuclear microspores.The highest percentage of germinated embryos and further synchronous development of the shoot and root was achieved in MS medium supplemented with IAA, GA3 (1 mg l–1) and activated charcoal (1%). When other germination media were used, malformations of androgenic embryos were observed.Abbreviations AC activated charcoal - H casein hydrolysate - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - BAP 6-benzylaminopurine - GA3 gibberelic acid - Kin 6-furfurylaminopurine - MS Murashige and Skoog - T thidiazurone - N phenyl-N'-1,2,3-thiadiazol-5-ylurea - Z zeatin-6-(4-hydroxy-3-methyl-trans-2-butenylamino)purine  相似文献   

6.
Mycelium of Puccinia graminis was grown for 4 d on 200 mM D-[U-14C]glucose followed by a cold chase for 30 h. Analysis of cellular metabolites during the chase indicated significant turnover only in carbohydrates soluble in 80% (w/v) ethanol. A kinetic analysis of the depletion of [14C] in pools of free sugars and sugar alcohols indicated that the trehalose pools and a small proportion (12–16%) of the mannitol and glucitol pools did not turn over, whilst pools of glucose, fructose, and the remainder of the hexitols became totally,depleted of label during the chase. Because the [14C] was totally lost from the pools of glucose and fructose prior to the hexitols, it was deduced that both of these hexoses were precursors of the hexitols. Estimation of the carbon fluxes through pools indicated that 52, 36 and 16% of the carbon from glucose was assimilated via glucitol, fructose and mannitol respectively, demonstrating that glucitol could not have originated from fructose as sole precursor. After offering D-[U-14C]glucitol, [14C] was assimilated into trehalose phosphate, glucans and amino acids, but not into free glucose or fructose. These data indicate that hexitols are quantitatively important intermediates during the assimilation of glucose by Puccinia graminis.  相似文献   

7.
Fluxes of carbohydrate metabolism in ripening bananas   总被引:1,自引:0,他引:1  
The major fluxes of carbohydrate metabolism were estimated during starch breakdown by ripening bananas (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21° C. Production of CO2 and the contents of starch, sucrose, glucose and fructose of intact fruit were determined for a period of 10 d that included the climacteric. The detailed distribution of label was determined after supplying the following to cores of pulp from climacteric fruit: [U-14C]-, [1-14C]-, [3,4-14C]-and [6-14C]glucose, [U-14C]glycerol, 14CO2. The data obtained were used to estimate the following fluxes, values given as mol hexose · (g FW)–1 · h–1 in parenthesis: starch to hexose monophosphates (5.9) and vice versa (0.4); hexose monophosphates to sucrose (7.7); sucrose to hexose (4.7); hexose to hexose monophosphate (3.8); glycolysis (0.5–1.6); triose phosphate to hexose monophosphates (0.14); oxidative pentose-phosphate pathway (0.48); CO2 fixation in the dark (0.005). These estimates are related to our understanding of carbohydrate metabolism during ripening.We both thank Mr Richard Trethewey for his constructive criticism: S.A.H. thanks the Managers of the Broodbank Fund for a fellowship.  相似文献   

8.
Glucose was required for the transport of arabinose into Bifidobacterium breve. The non-metabolisable glucose analogue 2-deoxy-d-glucose (2-DG) did not facilitate assimilation of arabinose. Studies using d-[U-14C]-labelled arabinose showed that it was fermented to pyruvate, formate, lactate and acetate, whereas the principal metabolic products of d-[U-14C]-labelled glucose were acetate and formate. In contrast to glucose, arabinose was not incorporated into cellular macromolecules. A variety of metabolic inhibitors and inhibitors of sugar transport (proton ionophores, metal ionophores, compounds associated with electron transport) were used to investigate the mechanisms of sugar uptake. Only NaF, an inhibitor of substrate level phosphorylation, and 2-DG inhibited glucose assimilation. 2-DG had no effect on arabinose uptake, but NaF was stimulatory. High levels of phosphorylation of glucose and 2-DG by PEP and to a lesser degree, ATP were seen in phosphoenolpyruvate: phosphotransferase (PEP:PTS) assays. These data together with strong inhibition of glucose uptake by NaF suggest a role for phosphorylation in the transport process. Arabinose uptake in B. breve was not directly dependent on phosphorylation or any other energy-linked form of transport but may be assimilated by glucose-dependent facilitated diffusion.Abbreviations (2,4-DNP) 2,4-dinitrophenol - (2,4-DNP) carbonylcyanide m-chlorophenylhydrazone - (CCCP) (phosphoenolpyruvate phosphotransferase system) - PEP: PTS trichloroacetic acid - (TCA) 2-deoxy-d-glucose - (2-DG) 2-deoxy-d-glucose  相似文献   

9.
Membrane fractions and digitonin-solubilized enzymes prepared from stem segments isolated from the third internode of etiolated pea seedlings (Pisum sativum L. cv. Alaska) catalyzed the synthesis of a -1,4-[su14C]mannan from GDP-d-[U-14C]-mannose, a mixed -1,3- and -1,4-[14C]glucan from GDP-d-[U-14C]-glucose and a -1,4-[14C]-glucomannan from both GDP-d-[U-14C]mannose and GDP-d-[U-14C]glucose. The kinetics of the membrane-bound and soluble mannan and glucan synthases were determined. The effects of ions, chelators, inhibitors of lipid-linked saccharides, polyamines, polyols, nucleotides, nucleoside-diphosphate sugars, acetyl-CoA, group-specific chemical probes, phospholipases and detergents on the membrane-bound mannan and glucan synthases were investigated. The -glucan synthase had different properties from other preparations which bring about the synthesis of -1,3-glucans (callose) and mixed -1,3- and -1,4-glucans and which use UDP-d-glucose as substrate. It also differed from xyloglucan synthase because in the presence of several concentrations of UDP-d-xylose in addition to GDP-d-glucose no xyloglucan was formed. Using either the membrane-bound or the soluble mannan synthase, GDP-d-glucose acted competitively in the presence of GDP-d-mannose to inhibit the incorporation of mannose into the polymer. This was not due to an inhibition of the transferase activity but was a result of the incorporation of glucose residues from GDP-d-glucose into a glucomannan. The kinetics and the composition of the synthesized glucomannan depended on the ratio of the concentrations of GDP-d-glucose and GDP-d-mannose that were available. Our data indicated that a single enzyme has an active centre that can use both GDP-d-mannose and GDP-d-glucose to bring about the synthesis of the heteropolysaccharide.Abbreviations CHAPS 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate - CHAPSO 3-[(3-cholamidopropyl)-dimethylammonio]-2-hydroxy-1-propanesulfonate - CHD 1,2-cyclohexanedione - CDP cytidine 5-diphosphate - EGTA ethylene glycol-bis(-aminoethyl ether) N,N,N,N-tetraacetic acid - GDP guanosine 5-diphosphate - NAI N-acetyl-imidazole - NEM N-ethylmaleimide - PGO phenylglyoxal This work has been made possible by grants of M.A.F. and M.U.R.S.T. 40% of Italy. Dr. A. Zuppa wishes to thank the C.N.R. of Italy for his research scolarship.  相似文献   

10.
WhenBacillus subtilis strain ATCC 21951, a transketolase-deficientd-ribose-producing mutant, was grown ond-glucose plus a second substrate which is metabolized via the oxidative pentose phosphate cycle (d-gluconic acid,d-xylose,l-arabinose ord-xylitol),d-glucose did not catabolite repress metabolism of the second carbon source. Thed-ribose yield obtained with the simultaneously converted carbon substrates, significantly exceeded that when onlyd-glucose was used. In addition, the concentration of glycolytic by-products and the fermentation time significantly decreased. Based on these findings, a fermentation process was developed withB. subtilis strain ATCC 21951 in whichd-glucose (100 g L–1) andd-gluconic acid (50 g L–1) were converted into 45 g L–1 ofd-ribose and 7.5 g L–1 of acetoin. A second process, based ond-glucose andd-xylose (100 g L–1 each), yielded 60 g L–1 ofd-ribose and 4 g L–1 of acetoin plus 2,3-butanediol. Both mixed carbon source fermentations provide excellent alternatives to the less efficientd-glucose-based processes used so far.  相似文献   

11.
Summary The patch-clamp technique and measurements of single cell [Ca2+] i have been used to investigate the importance of extracellular Na+ for carbohydrate-induced stimulation of RINm5F insulin-secreting cells. Using patch-clamp whole-cell (current-clamp) recordings the average cellular transmembrane potential was estimated to be –60±1 mV (n=83) and the average basal [Ca2+] i 102±6nm (n=37). When challenged with either glucose (2.5–10mm) ord-glyceraldehyde (10mm) the cells depolarized, which led to the initiation of Ca2+ spike potentials and a sharp rise in [Ca2+] i . Similar effects were also observed with the sulphonylurea compound tolbutamide (0.01–0.1mm). Both the generation of the spike potentials and the increase in [Ca2+] i were abolished when Ca2+ was removed from the bathing media. When all external Na+ was replaced with N-methyl-d-glucamine, in the continued presence of either glucose,d-glyceraldehyde or tolbutamide, a membrane repolarization resulted, which terminated Ca2+ spike potentials and attenuated the rise in [Ca2+] i . Tetrodotoxin (TTX) (1–2 m) was also found to both repolarize the membrane and abolish secretagogue-induced rises in [Ca2+] i .  相似文献   

12.
Summary The transepithelial water permeability in frog urinary bladder is believed to be essentially dependent on the ADH-regulated apical water permeability. To get a better understanding of the transmural water movement, the diffusional water permeability (P d) of the basolateral membrane of urinary bladder was studied. Access to this post-luminal barrier was made possible by perforating the apical membrane with amphotericin B. The addition of this antibiotic increasedP d from 1.12±0.10×10–4 cm/sec (n=7) to 4.08±0.33×10–4 cm/sec (n=7). The effect of mercuric sulfhydryl reagents, which are commonly used to characterize water channels, was tested on amphotericin B-treated bladders. HgCl2 (10–3 m) decreasedP d by 52% andpara-chloromercuribenzoic acid (pCMB) (1.4×10–4 m) by 34%. The activation energy for the diffusional water transport was found to increase from 4.52±0.23 kcal/mol (n=3), in the control situation, to 9.99±0.91 kcal/mol (n=4) in the presence of 1.4×10–4 m pCMB. Our second approach was to measure the kinetics of water efflux, by stop-flow light scattering, on isolated epithelial cells from urinary bladders.pCMB (0.5 or 1.4×10–4 m) was found to inhibit water exit by 91±2%. These data strongly support the existence of proteins responsible for water transport across the basolateral membrane, which are permanently present.  相似文献   

13.
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V m ), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K 0.5 MI , K 0.5 Na , and the Hill coefficient n. At 100 mM NaCl, K 0.5 MI was about 50 m and was independent of V m . At 0.5 mm myo-inositol, K 0.5 Na ranged from 76 mm at V m =–50 mV to 40 mm at V m =–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K I of 64 m at V m =–50 mV and 130 m at V m = –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V m =–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V m =–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V m . The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model. Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812 Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554.  相似文献   

14.
Studies using lysosomal membrane vesicles have suggested that efflux of the sulfate that results from lysosomal glycosaminoglycan degradation is carrier-mediated. In this study, glycosaminoglycan degradation and sulfate efflux were examined using cultured skin fibroblasts and lysosomes deficient in the lysosomal enzymeN-acetylgalactosamine-4-sulfatase. Such fibroblasts store dermatan sulfate lysosomally, which could be labelled biosynthetically with Na 2 35 SO4. The addition of recombinantN-acetylgalactosamine-4-sulfatase to the media of35S labelled fibroblasts degraded up to 82% of the stored dermatan [35S] sulfate over a subsequent 96 h chase and released inorganic [35S] sulfate into the medium. In the presence of 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS), sulfate was reused to a minor extent in newly synthesized proteoglycan. Isolated granules from recombinant enzyme supplemented fibroblasts degraded stored dermatan [35S]sulfate to sulfate which was rapidly released into the medium at a rate that was reduced by the extra-lysosomal presence of the lysosomal sulfate transport inhibitors SITS, Na2SO4 and Na2MoO4. SITS also inhibited dermatan sulfate turnover, although it had no effect on the action of purified recombinant enzymein vitro. These data imply that sulfate clearance occurred concomitantly with dermatan sulfate turnover in the lysosome even at high substrate loading, and that lysosome-derived sulfate, while available, is reutilized minimally in synthetic pathways.Abbreviations SITS 4-acetamido-4-isothiocyanatostilbene-2,-2-disulfonic acid - GAG glycosaminoglycan - 4S N-acetylgalactosamine-4-sulfatase - r4S recombinant humanN-acetylgalactosamine-4-sulfatase - PBS phosphate buffered saline - BME basal modified Eagle's medium - FBS fetal bovine serum - GalNAc4S-GlcA-GalitolNAc4S -(N-acetyl-d-galactosamine-4-sulfate)-(1–4)--d-glucuronic acid)-(1–3)-N-acetyl-d-[1-3H]galactosaminitol-4-sulfate - DS dermatan sulfate - MPS mucopolysaccharidosis  相似文献   

15.
A small quantity of (1→3)-β-d-glucan was extracted with a (1→3),(1→4)-β-d-glucan by hot water after treatment of the insoluble fraction of a buffer homogenate of Zea shoots with 3 molar LiCl. An ammonium sulfate precipitation procedure effected a separation of the (1→3)-β-d-glucan from the more prevalent (1→3),(1→4)-β-d-glucan. The minor component polysaccharide precipitated at a concentration of 20% ammonium sulfate (w/v) and was, as a consequence of precipitation, rendered insoluble in water. The insoluble products were dissolved in 1 normal NaOH followed by neutralization with CH3COOH. The purified polysaccharide accounted for approximately 0.3% of total hot water extract. It consisted mostly of glucose and its average mol wt was estimated to be about 7.0 × 104, based on elution from a calibrated Sepharose CL-4B column. Methylation analysis and enzymic hydrolysis or partial acid-hydrolysis of the polysaccharide followed by analysis of the hydrolysate showed that the polysaccharide consisted of (1→3)-β-linked glucose residues.  相似文献   

16.
d-Ribose, a five-carbon sugar, is used as a key intermediate for the production of various biomaterials, such as riboflavin and inosine monophosphate. A high d-ribose-producing Bacillus subtilis SPK1 strain was constructed by the chemical mutation of the transketolase-deficient strain, B. subtilis JY1. Batch fermentation of B. subtilis SPK1 with 20 g l–1 xylose and 20 g l–1 glucose resulted in 4.78 g l–1 dry cell mass, 23.0 g l–1d-ribose concentration, and 0.72 g l–1 h–1 productivity, corresponding to a 1.5- to 1.7-fold increase when compared with values for the parental strain. A late-exponential phase was chosen as the best point for switching to a fed-batch process. Optimized fed-batch fermentation of B. subtilis SPK1, feeding a mixture of 200 g l–1 xylose and 50 g l–1 glucose after the late-exponential phase reduced the residual xylose and glucose concentrations to less than 7.0 g l–1 and gave the best results of 46.6 g l–1d-ribose concentration and 0.88 g l–1 h–1 productivity which were 2.0- and 1.2-fold higher than the corresponding values in a simple batch fermentation.  相似文献   

17.
Indole-3-acetic acid (IAA) and its putative precursors, l- and d-tryptophan, indole-3-pyruvate, and tryptamine were isolated from tomato (Lycopersicon esculentum (L.) Mill.) shoots, identified by mass spectrometry, and measured using capillary gas chromatography with an electron capture detector and radioactive internal standards. Average amounts present were 7.9ng · (g FW)–-1 IAA, 5.7ng · (g FW)–-1 indole-3-pyruvate, 132 ng · (g FW)–-1 tryptamine, 103 ng · (g FW)–-1 d-tryptophan, and 2250 ng · (g FW)–-1 l-tryptophan. Indole-3-acetaldoxime was not found; detection limits were less than 1ng · (g FW)–-1. When tomato shoots were incubated for 6, 10 and 21 h in 30% –2H2O, up to four positions in IAA, l- and d-tryptophan, tryptamine and indole-3-pyruvate became labelled with –2H. Compounds became labelled rapidly with 10% of IAA molecules containing –2H after 6 h. The percentage of labelled molecules of IAA and l-tryptophan increased up to 10 h but then decreased again, correlating with an increase in the total shoot tryptophan and presumably a result of protein hydrolysis in the excised, slowly senescing tissue. The amount of –2H in d-tryptophan also showed an increase followed by a decrease, but the proportion of labelled molecules was much less than in l-tryptophan and IAA. Tryptamine became labelled initially at a similar rate to IAA but continued to accumulate –2H up to 21 h. We conclude that tryptamine is synthesized from a different pool of tryptophan from that used in IAA synthesis, and is not a major endogenous precursor of IAA in tomato shoots. Indole-3-pyruvate was the most heavily labelled compound after 6 and 10 h incubation (21-h data not available). Furthermore, the proportion of –2H-labelled indole-3-pyruvate molecules was quantitatively consistent with the amount of label in IAA. On the other hand, a quantitative comparison of the IAA turnover rate and the rate of –2H incorporation into both l- and d-tryptophan indicates that IAA is not made from the total shoot pool of either l- or d-tryptophan. Instead IAA appears to be synthesized from a restricted pool which is turning over rapidly and which has access to both newly synthesized tryptophan and that from protein hydrolysis.Abbreviations GC-ecd gas chromatography with electroncapture detector - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - IAOX indole-3-acetaldoxime - IPyA indole-3-pyruvate - PFB pentafluorobenzyl - RT retention time - TNH2 tryptamine - Trp tryptophan - SIM selected ion monitoring We wish to thank Ms. Sue Alford for running the mass spectra and Dr Harry Young for advice with the mass spectrometry. The work was supported by grants from the University of Auckland Research Committee and the C. Alma Baker Trust fund. The mass spectrometer was supported jointly by the University Grants Commitee (NZ) and the DSIR Division of Horticulture and Processing.  相似文献   

18.
1. Lipogenesis in vivo has been studied in mice given a 250mg. meal of [U-14C]glucose (2·5μc) or given an intraperitoneal injection of 25μg. of [U-14C]glucose (2·0μc). 2. The ability to convert a [U-14C]glucose meal into fatty acid was not significantly depressed by 6–7hr. of starvation. In contrast, incorporation of 14C into fatty acid in the liver after the intraperitoneal dose of [14C]glucose was depressed by 80% and by more than 90% by 1 and 2hr. of starvation respectively. Carcass fatty acid synthesis from the [U-14C]glucose meal was not depressed by 12hr. of starvation, whereas from the tracer dose of [U-14C]glucose the depression in incorporation was 80% after 6hr. of starvation. 3. Re-feeding for 3 days, after 3 days' starvation, raised fatty acid synthesis and cholesterol synthesis in the liver fivefold and tenfold respectively above the levels in non-starved control mice. These increases were associated with an increased amount of both fatty acid and cholesterol in the liver. 4. After 18hr. of starvation incorporation of a [U-14C]glucose meal into carcass and liver glycogen were both increased threefold.  相似文献   

19.
Somatic embryos from immature cotyledons in peanut (Arachis hypogaea) were initiated on media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-d). Over 90% primary embryogenesis and 41–46% repetitive embryogenesis were obtained 12 weeks after initiation by maintaining embryogenic cultures on medium containing 20 mg 1-1 2,4-d. Maintenance of cultures on medium with 30 or 40 mg I-1 2,4-d resulted in lower primary and secondary embryogenesis, and proliferation of nonembryogenic callus. Transfer of embryogenic cultures to a secondary medium with 10 or 20 mg I-1 2,4-d significantly enhanced secondary embryogenesis compared to basal medium without the growth regulator. The use of Murashige & Skoog versus Finer's media had no significant effect on embryogenesis (85–95%), repetitive embryogenesis (11–37%) or mean embryo number. Secondary embryogenesis was also maintained for over one year by repeated subculture of isolated somatic embryos on medium with 20 mg I-1 2,4-d.Abbreviations B5 Gamborg et al. medium (Gamborg et al. 1968) - 2,4-d 2,4-dichlorophenoxyacetic acid - FN Finer & Nagasawa medium (Finer & Nagasawa 1968) - MS Murashige & Skoog medium (Murashige & Skoog 1962)  相似文献   

20.
Biosynthesis of legume-seed galactomannans in vitro   总被引:5,自引:0,他引:5  
Particulate enzyme preparations were isolated from developing fenugreek (Trigonella foenum-graecum L.) and guar (Cyamopsis tetragonoloba [L.] Taub.) seed endosperms during the period of galactomannan deposition in vivo. These preparations catalysed the formation of polysacharide products from guanosine 5-diphosphate (GDP)-mannose, from uridine 5-diphosphate (UDP)-galactose and from mixtures of the two nucleotides. The products were analysed by solubility, by complete acid hydrolysis, and by selective enzymatic cleavage using pure enzymes of known specificity. With GDP-[U-14C]-d-mannose as substrate and a divalent metal cation (Mg+2, Mn+2, or Ca+2) a highly efficient transfer of labelled d-mannosyl residues was obtained to give a product identified as linear (14)--linked d-mannan. No transfer of galactosyl residues was obtained when GDP-[U-14C]-d-galactose was the only substrate, although very low and variable amounts of an unidentified product which released labelled glucose on acid hydrolysis were formed. In the presence of UDP-galactose, GDP-mannose and Mn+2 ions, products were formed which have been characterised as galactomanans — a linear (14)--d-mannan backbone carrying d-galactopyranosyl substituents linked (16)- to mannose. The degree of galactose substitution of the d-mannan backbone was manipulated in vitro by varying GDP-mannose concentrations at constant (saturating) UDP-galactose levels. The transfer of d-galactosyl residues from UDP-galactose to galactomannan was absolutely dependent upon the simultaneous transfer of D-mannosyl residues from GDP-mannose. d-Mannan sequences pre-formed in situ using the mannosyltransferase in the absence of UDP-galactose could not become galactose-substituted in a subsequent incubation either with UDP-galactose alone or with UDP-galactose plus GDP-mannose A model for the interaction of GDP-mannose mannosyltransferase and UDP-galactose galactosyltransferase in galactomannan biosynthesis is proposed.Abbreviations GDP guanosine 5-diphosphate - TLC thinlayer chromatography - UDP uridine 5-diphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号