首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Light-dependent photosynthesis of Chlorella vulgaris was investigated by using a novel photosynthesis measurement system that could cover wide ranges of incident light and cell density and reproduce accurate readings. Various photosynthesis models, which have been reported elsewhere, were classified and/or reformulated based upon the underlying hypotheses of the light dependence of the algal photosynthesis. Four types of models were derived, which contained distinct light-related variables such as the average or local photon flux density (APFD or LPFD) and the average or local photon absorption rate (APAR or LPAR). According to our experimental results, the LPFD and LPAR models could predict the experimental data more accurately although the APFD and APAR models have been widely used for the kinetic study of microalgal photosynthesis.  相似文献   

2.
Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L?1 was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L?1. These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.  相似文献   

3.
Microalgae currently receive growing attention as promising candidates for future bio‐economy concepts. However, the reliable maintenance of production strains remains challenging. The well‐established serial subculturing techniques suffer from low long‐time stability and high effort and are therefore stepwise being replaced by cryopreservation. Currently, available protocols are often deduced from cell culture technology and are rather complex. This study aimed to investigate if less complex approaches can be applied. We introduce an easy‐to‐use cryopreservation protocol based on the model organism Chlorella vulgaris. To overcome error‐prone viability estimation by plating techniques, an alternative method using growth pattern analysis was developed. As revealed by growth pattern analysis, the preservation of stationary phase cells proved superior to the commonly applied concept of freezing cells from the growing phase. Controlled‐rate cooling using simple devices resulted in reproducibly high post‐thawing viabilities in the range of 63 ± 2%. Moreover, the presented protocol highlights the potential of simplifying microalgal cryo‐preservation procedures, thereby reducing the required labor and material need to a minimum. Apart from the viability analysis of the cryopreserved microalga C. vulgaris, this approach seems to have the potential to be applied for other algae species and microorganisms, as well.  相似文献   

4.
The autotrophic growth of an oil‐rich indigenous microalgal isolate, identified as Chlorella vulgaris C? C, was promoted by using engineering strategies to obtain the microalgal oil for biodiesel synthesis. Illumination with a light/dark cycle of 14/10 (i.e., 14 h light‐on and 10 h light‐off) resulted in a high overall oil production rate (voil) of 9.78 mg/L/day and a high electricity conversion efficiency (Ec) of 23.7 mg cell/kw h. When using a NaHCO3 concentration of 1,500 mg/L as carbon source, the voil and Ec were maximal at 100 mg/L/day and 128 mg/kw h, respectively. A Monod type model was used to describe the microalgal growth kinetics with an estimated maximum specific growth rate (μmax) of 0.605 day?1 and a half saturation coefficient (Ks) of 124.9 mg/L. An optimal nitrogen source (KNO3) concentration of 625 mg/L could further enhance the microalgal biomass and oil production, leading to a nearly 6.19 fold increase in voil value. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
Light supply is one of the most important factors affecting autotrophic growth of microalgae. This study investigated the effect of the type and light intensity of artificial light sources on the cell growth of an indigenous microalga Chlorella vulgaris ESP‐31 obtained from southern Taiwan. In addition, a dissolved inorganic carbon source (i.e. sodium bicarbonate) was used to improve the biomass production of strain ESP‐31. The results show that a new fluorescent light source (TL5) was effective in indoor cultivation of microalgae. Better overall productivity of 0.029 g dry cell weight/L‐d was obtained when using TL5 lamps as the light source with a light intensity of 9 W/m2. A carbon source (sodium bicarbonate) concentration of 1000 mg/L was found to be optimal for the growth of strain ESP‐31 in terms of both biomass production and carbon source utilization. Under the optimal growth conditions, the resulting microalgal biomass consisted of 25–30% protein, 6–10% carbohydrate, and 30–40% lipid.  相似文献   

6.
An in‐depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab‐scale PBRs, a torus PBR and a thin flat‐panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat‐panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247–261, 2016  相似文献   

7.
pH值对沼液培养的普通小球藻生长及油含量积累的影响   总被引:3,自引:0,他引:3  
王翠  李环  王钦琪  韦萍 《生物工程学报》2010,26(8):1074-1079
以50%的沼液为普通小球藻的全营养培养基,考察培养基的起始pH值对小球藻生长及油脂含量的影响,普通小球藻对不同初始pH的沼液中氮、磷的去除情况。设定了2组实验,一组只调节初始接种培养液的pH,分别为6.0、6.5、7.0、7.5、8.0、8.5;另一组将培养液pH分别固定在6.0、6.5、7.0、7.5、8.0、8.5,pH用稀HCl和NaOH进行调节。研究发现在pH 6.5和pH 7.0的偏酸环境有利于小球藻生长,而pH在7.0~8.5的偏碱性条件下有利于小球藻油脂的积累,因此综合小球藻生长和油脂积累2个因素,得到最适合小球藻生长和油脂积累的pH为7.0。培养结束后沼液中氮磷的去除率分别达到了95%和97%,沼液中的总氮由原来的134.91 mg/L降至4.86 mg/L,总磷由10.19 mg/L降到0.32 mg/L。  相似文献   

8.
微藻是可广泛用于健康食品及水产养殖的饵料,同时,微藻细胞内积累的油脂可作为可再生生物燃料,因此微藻的生长和代谢受到广泛关注。温度和pH对微藻的生物量积累有很大影响,考察不同温度和pH条件下微藻细胞的生长有助于寻找最佳的条件进行微藻的培养。自絮凝小球藻JSC-7(Chlorella vulgaris JSC-7)可实现自沉降采收,有利于降低微藻生产成本,优化其生长条件对更好地利用该微藻具有重要意义。考察了温度(22∽40℃)及pH(6.0∽10.0)对其细胞生长、叶绿素含量和油脂产量的影响。在所选取的温度及pH范围内,JSC-7细胞均可生长,显示该藻种可以适应广泛的温度和pH条件。适合细胞生长的温度依次为31℃〉28℃〉35℃〉25℃,pH依次为7.0〉8.0〉6.0。pH 8.0时生物量和油脂的积累量最多,说明该藻株在弱碱条件下更适合生长和产油。当温度为31℃、pH为7.0时,可获得最高的生长量(OD690=0.941)、叶绿素含量(19 mg/L)及油脂产量(39.07%/克干重)。  相似文献   

9.
本文采用尿素-月桂酰肌氨酸钠(urea-sarkosyl)法, 用于分离带有坚硬细胞壁小球藻的高纯度叶绿体DNA (cpDNA)。将对数生长期的小球藻收集后置于冰上研磨, percoll密度梯度离心收集叶绿体层, 显微观察表明叶绿体经梯度离心后形态完整。采用尿素-月桂酰肌氨酸钠法、蛋白酶K消化及酚/氯仿/异戊醇抽提, 获得了高纯度的cpDNA。检测结果显示, cpDNA分子长度为22 kb, A260:A280值为1.87±0.01, 产率达(2.52±0.01) μg?g-1 (DW); cpDNA编码的16S rDNA扩增呈阳性, 而由细胞核编码的18S rDNA扩增呈阴性。表明cpDNA纯度高, 没有受到核基因组DNA的污染, 符合小球藻cpDNA高通量测序的要求。同时, 该方法也适合提取具有相似细胞壁成分的其他微藻的基因组DNA和cpDNA。  相似文献   

10.
Magnetic cobalt ferrite/silica nanoparticles (MSNs) and methyl functionalized MSNs (methyl‐MSNs) were used to enhance lipid production in Chlorella vulgaris culture through enhancement of gas‐water mass transfer and increased dissolved concentration of CO2. Methyl‐MSNs enhanced CO2–water mass transfer rate better than MSNs, and 0.3 wt% methyl‐MSNs are more effective than 0.1 wt% MSNs. In the cultivation experiment, 0.3 wt% methyl‐MSNs yielded the highest dry cell weight and subsequently, the highest mass transfer rate. However, enhancement of mass transfer rate did not increase lipid content. The volumetric lipid productivity in C. vulgaris culture depends not only on intracellular lipid content but also on the cell mass concentration. Consequently, 0.1 wt% methyl‐MSNs yielded the highest volumetric lipid productivity in C. vulgaris cultivation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:929–933, 2018  相似文献   

11.
12.
Chlorella vulgaris (C. vulgaris) microalga was investigated as a new potential feedstock for the production of biodegradable lubricant. In order to enhance microalgae lipid for biolubricant production, mixotrophic growth of C. vulgaris was optimized using statistical analysis of Plackett–Burman (P-B) and response surface methodology (RSM). A cheap substrate-based medium of molasses and corn steep liquor (CSL) was used instead of expensive mineral salts to reduce the total cost of microalgae production. The effects of molasses and CSL concentration (cheap substrates) and light intensity on the growth of microalgae and their lipid content were analyzed and modeled. Designed models by RSM showed good compatibility with a 95% confidence level when compared to the cultivation system. According to the models, optimal cultivation conditions were obtained with biomass productivity of 0.123 g L?1 day?1 and lipid dry weight of 0.64 g L?1 as 35% of dry weight of C. vulgaris. The extracted microalgae lipid presented useful fatty acid for biolubricant production with viscosities of 42.00 cSt at 40°C and 8.500 cSt at 100°C, viscosity index of 185, flash point of 185°C, and pour point of ?6°C. These properties showed that microalgae lipid could be used as potential feedstock for biolubricant production.  相似文献   

13.
水生花卉对铜绿微囊藻、斜生栅藻和小球藻生长的影响   总被引:5,自引:0,他引:5  
选择黄菖蒲(Iris pseudacorus)、溪荪(I.sanguinea)、梭鱼草(Pontederia cordata)、白花水龙(Jussiaea repens)、水罂粟(Hydrocleys nymphoides)和大藻(Pistia stratiotes)6种具有较高观赏价值的水生花卉,通过将植物种植水与藻类共同培养的方式研究了不同种植时间的种植水对铜绿微囊藻(Microcystis aeruginosa)、斜生栅藻(Scenedesmus obliqnus)和小球藻(Chlorella vulgaris)生长的影响.结果表明:6种水生花卉种植水对3种藻类的化感作用具有选择性.通过6d的处理,种植水对铜绿微囊藻生长的抑制率为31.22% ~ 96.53%,除白花水龙外,其余5种花卉的种植水对铜绿微囊藻生长的抑制率均超过70%,表现出很好的抑藻效果;种植水对斜生栅藻生长的抑制率为23.15%~77.25%;而种植水对小球藻有抑制也有促进,抑制率为-26.07% ~75.70%,大藻、梭鱼草和溪荪抑制小球藻的生长,黄菖蒲、白花水龙表现为低促高抑,水罂粟表现为促进作用.随着种植时间的延长,种植水对3种藻类的抑制作用增强.6种水生花卉种植水对铜绿微囊藻生长的抑制作用由大到小依次为水罂粟>黄菖蒲>梭鱼草>大藻>溪荪>白花水龙;对斜生栅藻生长的抑制作用由大到小依次为梭鱼草>溪荪>黄菖蒲>水罂粟>白花水龙>大藻;对小球藻生长的抑制作用由大到小依次为大藻>梭鱼草>溪荪>黄菖蒲、白花水龙>水罂粟.试验表明,6种水生花卉在控制城市景观水体中的藻类水华有一定的推广价值.  相似文献   

14.
利用响应面法优化了混合营养培养普通小球藻生产生物质的培养基组成.首先采用Plackett-Burman设计对11个相关营养因素的效应进行了评价,并筛选出影响小球藻细胞生长的3个主要因素为KNO3、葡萄糖和NaC1;然后结合Box-Behnken设计建立了以小球藻浓度为响应值的二次回归方程模型,获得优化的培养基组成为KNO31.64g/L、葡萄糖45g/L、NaC1 1.57g/L;模型预测的最大浓度为5.28g/L,验证值为5.68g/L;验证结果表明,所建立模型预测精度较好,可用于优化小球藻的混养培养基组成.优化条件下混养小球藻细胞的蛋白质和色素含量较优化前降低,而可溶性糖和油脂含量提高,脂肪酸以棕榈酸和油酸为主;细胞组分分析结果显示,混养培养所得小球藻生物质具有作为生产微藻生物能源原料的潜力.  相似文献   

15.
Many microorganisms are capable of sequestering and concentrating heavy metals from their aqueous environment. While much research has beep carried out on the uptake of single species of metal ions, little attention seems to have been given to the study of multimetal ion systems. A mathematical model has previously been developed to describe the uptake of individual metal species by a microorganism. The model proposes two sequential processes: an initial rapid uptake due to cellular surface adsorption and a subsequent slow uptake due to membrane transport of the metal into the cells. This article extends the treatment by considering the uptake of two metal species together, cadmium and zinc, under different experimental conditions. The results are discussed in terms of possible mechanistic interactions.  相似文献   

16.
Microalgal biomass was hydrolyzed using a solid acid catalyst with the aid of liquid acid. The use of solid acid as the main catalyst instead of liquid acid was to omit subsequent neutralization and/or desalination steps, which are commonly required in using the resulting hydrolysates for microbial fermentation. The hydrolysis of 10 g/L of lipid-extracted Chlorella vulgaris containing 12.2% carbohydrates using 7.6 g/L Amberlyst 36 and 0.0075 N nitric acid at 150°C resulted in 1.08 g/L of mono-sugars with a yield of 88.5%. For hydrolysis of higher concentrations of the biomass over 10 g/L, the amount of Amberlyst 36 needed to be increased in proportion to the biomass concentration to maintain similar levels of hydrolysis performance. Increasing the solid acid concentration protected the surface of the solid acid from being severely covered by cell debris during the reaction. A hydrolysate of lipid-extracted C. vulgaris 50 g/L was used, with no post-treatment of desalination, for the cultivation of Klebsiella oxytoca producing 2,3-butanediol. Cell growth in the hydrolysate was found to be almost the same as in the conventional medium with the same monosaccharide composition, confirming its fermentation compatibility. It was noticeable that the yield of 2,3-butanediol with the hydrolysate was observed to be 2.6 times higher than that with the conventional medium. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2729, 2019  相似文献   

17.
Lutein is a carotenoid with a purported role in protecting eyes from oxidative stress, particularly the high‐energy photons of blue light. Statistical optimization was performed to growth media that supports a higher production of lutein by heterotrophically cultivated Chlorella vulgaris. The effect of media composition of C. vulgaris on lutein was examined using fractional factorial design (FFD) and central composite design (CCD). The results indicated that the presence of magnesium sulfate, EDTA‐2Na, and trace metal solution significantly affected lutein production. The optimum concentrations for lutein production were found to be 0.34 g/L, 0.06 g/L, and 0.4 mL/L for MgSO4·7H2O, EDTA‐2Na, and trace metal solution, respectively. These values were validated using a 5‐L jar fermenter. Lutein concentration was increased by almost 80% (139.64 ± 12.88 mg/L to 252.75 ± 12.92 mg/L) after 4 days. Moreover, the lutein concentration was not reduced as the cultivation was scaled up to 25,000 L (260.55 ± 3.23 mg/L) and 240,000 L (263.13 ± 2.72 mg/L). These observations suggest C. vulgaris as a potential lutein source. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:736–743, 2014  相似文献   

18.
Condensed suspension of Chlorellavulgaris was used for the food of the rotifer Brachionus plicatilis and B. rotundiformis inplace of Nannochloropsis oculata. Thisreport describes the characteristics of C. vulgaris as arotifer food in comparison with N. oculata and thepresent status of this field.The cell components of C. vulgarissuch as protein content, amino acids, minerals andvitamins are generally similar to those of N. oculata. However, the taxonomic status of thesealgal species are different. Based on thesimilarity of cell components, the dietary value ofC. vulgaris is equal in value to that of N. oculata for rotifer growth. Dietary value ofC. vulgaris can be improved by addition ofvitamin B12. This improved C. vulgaris is currently widely used as an indispensable food organism for rotifer culture. Recent investigationshave shown that the use of the condensed suspensionof C. vulgaris makes it possible tosignificantly increase the rotifer density atharvest. Application of condensed C. vulgaris has made rotifer culture quite easy because theculture of N. oculata is no longer required,and intensive rotifer production in aquaculture cannow be realized.  相似文献   

19.
Production of lutein by the green microalga Chlorella protothecoides grown heterotrophically in a fermentor using glucose as the carbon source and urea as the nitrogen source was investigated. An unstructured kinetic model was proposed to describe the microalgal culture system including cell growth, lutein formation, as well as glucose and nitrogen consumption. The inhibition potentials of biomass, product and substrates on growth and lutein formation were examined and incorporated into the kinetic model. Values of the kinetic model parameters were estimated. The resulting model predictions were in good agreement with the experimental results. The model can be helpful in scale-up, optimization and control of the C. protothecoides culture process, and can also be used as a guideline for similar microalgal cultivation systems. Received 28 January 1999/ Accepted in revised form 27 August 1999  相似文献   

20.
Growth of and the capacity to take up nitrogen in the freshwater microalgae Chlorella vulgaris were studied while varying the concentrations of ammonium and nitrate, the pH and the source of carbon in a synthetic wastewater growth medium when co-immobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Analyses of 29 independent experiments showed that co-immobilization of the microalgae with A. brasilense could result in two independent phenomena directly affected by cultivation factors, such as nitrogen species, pH and presence of a carbon source. First, growth of the microalgal population increased without an increase in the capacity of the single cells to take up nitrogen, or second, the capacity of cells to take up nitrogen increased without an increase of the total microalgal population. These phenomena were dependent on the population density of the microalgae, which was in turn affected by cultivation factors. This supports the conclusion that the size of the microalgal population controls the uptake of nitrogen in C. vulgaris cells - the higher the population (regardless the experimental parameters), the less nitrogen each cell takes up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号