首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
J D Wolchok  J Vilcek 《Cytokine》1992,4(6):520-527
Expression of HLA class I antigens is known to be regulated by various cytokines at both the mRNA and protein levels. We have examined the induction of HLA-B7 by tumor necrosis factor alpha (TNF), interleukin 1 alpha (IL-1) and interferon beta (IFN-beta) in normal human diploid FS-4 fibroblasts. Optimal induction of HLA-B7 by TNF at 24 h was shown to require a continuous presence of TNF. Since TNF also induces IFN-beta in these cells and the latter cytokine itself has the capacity to upregulate HLA class I expression, we investigated the role of autocrine IFN-beta in the induction of HLA-B7 by TNF. Experiments with neutralizing polyclonal antibodies to recombinant IFN-beta showed that the induction of HLA-B7 mRNA by TNF was partially dependent on autocrine IFN-beta. However, TNF and IFN-beta induced HLA-B7 mRNA with similar kinetics and treatment with saturating concentrations of both TNF and IFN-beta resulted in an additive or possibly synergistic response. The latter findings support the idea that induction of HLA class I by TNF is not mediated solely by autocrine IFN-beta produced in response to TNF. In addition, experiments with the protein synthesis inhibitor cycloheximide suggested that the induction of mRNAs for both the heavy and light (beta 2-microglobulin) chains of the HLA class I antigen by TNF did not require de novo protein synthesis. IL-1 was also shown to increase steady-state mRNA levels of HLA-B7 with kinetics similar to those of TNF and IFN-beta in FS-4 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
IL-1 and TNF induced concentration-related increases in the synthesis of factor B, C3, and IFN-beta 2/IL-6 in human skin fibroblasts. Effects of both stimuli were apparent with concentrations as low as 0.1 ng/ml and maximal responses were observed between 1 and 10 ng/ml; only for IL-1 induction of IFN-beta 2/IL-6 was there a further increase in response up to 100 ng/ml. For factor B and C3, maximal increases induced by IL-1 and TNF were similar: 119- and 109-fold for factor B and 15-fold and 11-fold for C3, respectively. Although both IL-1 and TNF increase synthesis of factor B and C3 in hepatocytes, the increases observed in fibroblasts were approximately 50- and 8-fold more for factor B and C3, respectively. Neither protein synthesis nor mRNA for IFN-beta 2/IL-6 was present in HepG2 cells either before or after stimulation with IL-1 or TNF. In contrast to the similarities between the effects of IL-1 and TNF on synthesis of factor B, C3, and IFN-beta 2/IL-6, only TNF increased synthesis of factor H. Because TNF induces membrane IL-1 in fibroblasts, it is possible to speculate that the effects of TNF on fibroblasts are due to induction of IL-1. An autocrine action of TNF through IL-1 is possible for TNF-induced synthesis of IFN-beta 2/IL-6, but the effects of TNF on synthesis of factor B, C3, and factor H indicated that TNF has effects on fibroblasts separate from IL-1. The effects of IL-1 and TNF on the synthesis of factor B and C3 in fibroblasts may be a part of an acute phase response occurring at a local level. However, the large responses in synthesis of factor B and C3 to IL-1 and TNF may suggest that factor B and C3 have a role, as yet undescribed, in tissues in addition to the role these proteins are known to play in inflammation.  相似文献   

6.
Earlier studies demonstrated the induction of beta 2-interferon (IFN-beta 2) in human diploid fibroblasts (FS-4 strain) exposed to tumor necrosis factor (TNF). These studies suggested that IFN-beta 2 mediates an antiviral effect in TNF-treated cells and exerts a feedback inhibition of the mitogenic effect of TNF. Here we demonstrate that the expression of the antiviral action of TNF can be enhanced by prior exposure of FS-4 cells to trace amounts of IFN-beta 1. IFN-beta 1, at a higher concentration, can directly increase the expression of IFN-beta 2. Exposure of cells to TNF enhanced IFN-beta 2 (but not IFN-beta 1) mRNA expression in response to poly(I).poly(C), an IFN inducer which is also known to stimulate FS-4 cell growth. Platelet-derived growth factor and interleukin-1 also led to the increased expression of IFN-beta 2. However, platelet-derived growth factor and interleukin-1 could override the antiviral effect of TNF and also that of exogenously added IFN-beta 1. Our data suggest that a complex network of interactions that involves the endogenous production of IFN-beta 2 is triggered by several growth-modulatory cytokines. Cellular homeostasis is likely to represent a balance between the induction of IFN-beta 2 by these cytokines and their ability to override the inhibitory actions of IFN-beta 2.  相似文献   

7.
Tumor necrosis factor (TNF), interleukin-1 (IL-1), and epidermal growth factor (EGF) were mitogenic for human diploid FS-4 fibroblasts. Dexamethasone amplified the growth-stimulating action of all three agents. Amplification of the growth-stimulating action was maximal when dexamethasone was added along with TNF or EGF; no amplification was seen if the addition of dexamethasone was delayed for more than 3 hr. Prolonged simultaneous treatment with TNF and EGF resulted in less growth stimulation than treatment with EGF alone. Dexamethasone abolished this apparent antagonistic interaction between TNF and EGF. Dexamethasone also inhibited the antiviral action of TNF against encephalomyocarditis (EMC) virus in FS-4 cells. TNF and IL-1 increased the steady state level of interferon (IFN)-beta 2 mRNA but failed to induce detectable levels of IFN-beta 1 mRNA in FS-4 cells. Dexamethasone inhibited the increase of IFN-beta 2 mRNA levels by IL-1 or TNF. Inhibition of IFN-beta synthesis is likely to be responsible for the inhibition of the TNF-induced antiviral state by dexamethasone. Since IFNs suppress cell growth, inhibition of endogenous IFN-beta synthesis may also be responsible for the amplification by dexamethasone of the growth-stimulating action of TNF and IL-1. Amplification of the mitogenic action of EGF by dexamethasone appears to be mediated by different mechanism.  相似文献   

8.
9.
10.
11.
This study confirms our earlier finding that human interleukin (IL)-1 beta exerts an antiviral effect on diploid fibroblasts and on MG-63 osteosarcoma cells. It also extends the observation in that a similar effect was noted on aged but not freshly trypsinized HEp-2 cells, and that not only IL-1 beta but also IL-1 alpha and tumor necrosis factor (TNF)-alpha exerted similar antiviral effects on cells. The antiviral effects of these cytokines were neutralized by addition to the assay system of an antibody that was specific for interferon (IFN)-beta 1, indicating that IFN-beta 1 or a structurally or functionally related substance is involved in the antiviral activity observed. Both IL-1 and TNF were able to induce production of the 26-kDa protein, also known as IFN-beta 2, hybridoma/plasmacytoma growth factor (HPGF) or B-cell stimulatory factor-2 (BSF-2) and previously proposed as an alternative to IFN-beta 1 for mediating the antiviral effect of TNF. However, no good correlation was found between the antiviral effects of TNF and its potential to induce production of the 26-kDa protein. Furthermore, the anti-IFN-beta 1 serum which neutralized the antiviral activity of IL-1 and TNF did not cross-react with the 26-kDa protein. Conversely, the antiviral effect of IL-1 and TNF was only weakly neutralized by an antibody that did react with the 26-kDa protein and showed low cross-reactivity with IFN-beta 1. These observations, together with the low specific activity of the 26-kDa protein as an antiviral agent (less than 10(5) U/mg protein) provide strong arguments against this protein and in favor of IFN-beta 1 (or still another IFN-beta 1-related molecule) as the ultimate mediator of the antiviral effect of IL-1 and TNF.  相似文献   

12.
We have previously shown that tumor necrosis factor (TNF) can increase the number of epidermal growth factor (EGF) receptors on human FS-4 fibroblasts and that this increase may be related to the mitogenic action of TNF in these cells. Here we show that TNF stimulated the growth of FS-4 fibroblasts in a chemically defined, serum-free medium in the absence of EGF. Anti-EGF receptor antibody, which blocked the mitogenic effects of EGF in FS-4 cells, did not inhibit the mitogenic action of TNF in serum-free or serum-containing medium, indicating that EGF or an EGF-like molecule was not responsible for the mitogenic effects of TNF. However, the simultaneous addition of TNF and EGF to cells grown in serum-free medium resulted in a synergistic stimulation of DNA synthesis and cell growth. The actions of TNF and EGF were also examined in growth-arrested FS-4 cells and were compared with the action of platelet-derived growth factor (PDGF). In the absence of other growth factors, TNF was a relatively weak mitogen in growth-arrested cells, compared with EGF or PDGF. Nevertheless, TNF synergized with EGF or high doses of PDGF in stimulating DNA synthesis. Furthermore, antibodies specific for TNF or the EGF receptor were used to selectively inhibit the actions of these two factors, after specific incubation periods, in growth-arrested cells treated concurrently with EGF and TNF. To produce an optimal stimulation of DNA synthesis, EGF had to be present for a longer period of time than TNF. We conclude that in their synergistic action on growth-arrested FS-4 cells, EGF was responsible for driving the majority of the cells into S phase, while TNF appeared to make the cells more responsive to the mitogenic action of EGF. The findings indicate that TNF can cooperate with, and enhance the actions of, EGF in promoting DNA synthesis and cell division.  相似文献   

13.
Tumor necrosis factor (TNF) and interleukin-1 (IL-1) were shown previously to be mitogenic for human fibroblasts. Here we show that recombinant human TNF and recombinant human IL-1 alpha increase steady state levels of c-fos and c-myc proto-oncogene mRNAs in quiescent human FS-4 fibroblasts. Proto-oncogene mRNA levels were enhanced within 20 min of TNF or IL-1 addition, peaked at 30 min, and declined to undetectable levels (c-fos) or basal levels (c-myc) by 60 or 90 min. A similar rapid increase in c-fos and c-myc mRNA was seen in quiescent FS-4 cells exposed to cycloheximide. However, in the presence of cycloheximide, both proto-oncogene mRNA levels continued to rise for at least 90 min. The transient nature of the increase in c-myc mRNA levels appears to be a response characteristic for TNF and IL-1 because in quiescent FS-4 cells exposed to 10% fetal bovine serum, steady state levels of c-myc mRNA remained elevated for at least 4 h.  相似文献   

14.
The cytokine IFN-beta 2/IL-6 has emerged as an important means of communication between cells--both within the immune system as well as outside it. In exploring the link between the endocrine and the immune systems, we have studied the secretion of IFN-beta 2/IL-6 by freshly explanted human endometrial stromal cells and its modulation by estrogens. Endometrial stromal cells produced IFN-beta 2/IL-6 in response to other inflammation-associated cytokines such as IL-1 alpha or beta, TNF, and IFN-gamma. This secretion was strongly inhibited by estradiol-17 beta at concentrations as low as 10(-9) M. Multiple species of stromal cell IFN-beta 2/IL-6 in the size range 23 to 30 kDa were detected using immunoprecipitation or immunoblotting procedures. The endometrial stromal cell IFN-beta 2/IL-6 species were phosphorylated and differentially glycosylated in a manner comparable to IFN-beta 2/IL-6 secreted by induced human peripheral blood monocytes or foreskin fibroblasts. However, in contrast to peripheral blood monocytes and fibroblasts, bacterial LPS did not induce IFN-beta 2/IL-6 production in endometrial stromal cells. Additionally, the IFN-beta 2/IL-6 identified in medium from IL-1 alpha-induced stromal cells is biologically active on hepatocytes. These observations, taken together with the observation that IFN-beta 2/IL-6 strongly inhibits the proliferation of human epithelial cells, suggest the possibility that stromal cell secreted IFN-beta 2/IL-6 may affect the physiology of the overlying epithelium in an hormonally modulated manner. Estrogen-regulated production of endometrial IFN-beta 2/IL-6 may participate in gender-specific systemic immunomodulation.  相似文献   

15.
16.
17.
A Simon  J Fh  O Haller    P Staeheli 《Journal of virology》1991,65(2):968-971
Accumulation of Mx gene products in cells of patients and experimental animals has been recognized as a useful marker for detecting minute quantities of biologically active interferon (IFN). Goetschy et al. (J. Goetschy, H. Zeller, J. Content, and M. A. Horisberger, J. Virol. 63:2616-2622, 1989) reported that not only IFNs but also interleukin-1 (IL-1) and tumor necrosis factor (TNF) were potent inducers of the human Mx genes. However, we observed no Mx induction in cultured human fibroblasts or in human peripheral blood mononuclear cells treated with various concentrations of IL-1 alpha or TNF-alpha. Mx induction was found in the spleens of mice treated with TNF-alpha or IL-1 alpha, but this effect could be neutralized with antibodies to murine IFN-alpha/beta. Of the other cytokines that we tested (IL-2, IL-6, and granulocyte-macrophage colony-stimulating factor), only IL-2 induced the Mx genes in peripheral blood mononuclear cells, but antibodies to human IFN-beta efficiently neutralized this effect. Our results thus indicate that IFNs are the only cytokines with intrinsic Mx-inducing activity.  相似文献   

18.
Among the major cytokines present in inflammatory lesions interleukin-1 (IL-1), tumor necrosis factor alpha (TNF alpha) and interleukin-6 (IL-6) share many biological activities. Since IL-1 alpha, IL-1 beta and TNF alpha have been previously demonstrated to play an important role in connective tissue destruction by stimulating the production of prostaglandin E2 (PGE2) and collagenase, these functions were investigated in the presence or absence of natural human IL-6 (nhIL-6) or recombinant human IL-6 (rhIL-6). IL-6 was found 1 degree to stimulate immunoglobulin A production by the CESS B cell line up to 19 fold without being affected by the presence of IL-1 beta and 2 degrees to stimulate murine thymocytes proliferation up to 2-4 fold, with an increase up to 60-fold in costimulation with either IL-1 alpha or beta. IL-6 alone, even at very high concentrations (up to 200 U/ml and 50 ng/ml), did not induce PGE2 production by fibroblasts and synovial cells. However, IL-1 alpha or beta induced PGE2 production by human dermal fibroblasts and by human synovial cells was inhibited (in 5/8 experiments) up to 62% by addition of IL-6. On the contrary in 2/4 experiments TNF alpha-induced PGE2 production was increased (approximately 2 fold) by the addition of IL-6. IL-1 and TNF alpha-induced collagenase production in synovial cells remained unchanged in the presence of IL-6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Interleukin 6 (IL-6; also referred to as interferon-beta 2, 26-kDa protein, and B cell stimulatory factor 2) is a cytokine whose actions include a stimulation of immunoglobulin synthesis, enhancement of B cell growth, and modulation of acute phase protein synthesis by hepatocytes. Synthesis of IL-6 is stimulated by interleukin 1 (IL-1), tumor necrosis factor (TNF), or platelet-derived growth factor. We examined the role of the cyclic AMP (cAMP)-dependent signal transduction pathway in IL-6 gene expression. Several activators of adenylate cyclase, including prostaglandin E1, forskolin, and cholera toxin, as well as the phosphodiesterase inhibitor isobutylmethylxanthine and the cAMP analog dibutyryl cAMP, shared the ability to cause a dramatic and sustained increase in IL-6 mRNA levels in human FS-4 fibroblasts. Actinomycin D treatment abolished this enhancement. Treatments that increased intracellular cAMP also stimulated the secretion of the IL-6 protein in a biologically active form. Increased intracellular cAMP appears to enhance IL-6 gene expression by a protein kinase C-independent mechanism because down-regulation of protein kinase C by a chronic exposure of cells to a high dose of 12-O-tetradecanoylphorbol 13-acetate did not abolish the enhancement of IL-6 expression by treatments that increase cAMP. IL-1 and TNF too increased IL-6 mRNA levels by a protein kinase C-independent mechanism. Our results suggest a role for the cAMP-dependent pathway(s) in IL-6 gene activation by TNF and IL-1.  相似文献   

20.
The effect was investigated of combinations of cytokines known to be cytostatic for some tumor cells, namely interleukin 1 alpha (IL-1 alpha), interferon-beta (IFN-beta), and tumor necrosis factor (TNF), on the growth and differentiation of the mouse myeloid leukemic cell line, M1, cells. IL-1 alpha, IFN-beta, and TNF by themselves are antiproliferative for M1 cells. Treatment of cells with a mixture of any two of the three cytokines resulted in at least additive growth inhibition. None of these cytokines by themselves induced differentiation of M1 cells as assessed by increased expression of Fc receptors (FcR), stimulation of phagocytic activity and by morphologic criteria. However, as little as 1 U/ml IL-1 alpha in conjunction with IFN-beta or TNF increased FcR expression, phagocytic activity and morphologic changes in addition to inhibiting the growth of M1 cells. The combination of IFN-beta and TNF did not induce differentiation, although the growth of the cells was markedly inhibited. Both TNF and lipopolysaccharide (LPS) induced the in vitro production of IFN activity by M1 cells. Furthermore, the induction of differentiation of M1 cells by a combination of IL-1 alpha with either IFN-beta, TNF, or LPS was inhibited by antibody against mouse IFN-beta. Therefore, it appears that IFN-beta provides one of the two required signals for differentiation of M1 cells by these combinations of stimulants, the other being IL-1. Furthermore, the cytostatic effect of TNF by itself on M1 cells was also partly blocked by anti-IFN-beta antibody, suggesting that IFN-beta is also involved in the growth inhibitory effect of TNF for M1 cells. In contrast, the cytostatic effect of IL-1 on M1 cells was not blocked by anti-IFN-beta antibody. In conclusion, both the cytostatic and differentiative effect of TNF appear to be mediated by IFN-beta. Thus, the combination of IL-1 and IFN-beta or inducers of IFN-beta resulted in terminal differentiation of M1 cells. Northern blot analysis using cDNAs for murine IFN-beta1 or human IFN-beta2 showed an increased expression of mRNA for IFN-beta1 but not for IFN-beta2 by stimulation with TNF or LPS, strongly suggesting that IFN-beta 1 rather than IFN-beta 2 is responsible for TNF or LPS effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号