首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
哺乳动物细胞SIRT1(Sirtuin1)是一种依赖于烟酰胺腺苷二核苷酸(NAD+)的去乙酰化酶,与酵母细胞中与物质代谢和长寿有关的沉默信息调节因子SIR2同源,具有对底物去乙酰化功能的基因。SIRT1通过使底物蛋白的去乙酰化而调控DNA的表达、细胞凋亡、衰老,参与生物体生理或病理过程。本文对SIRT1与寿命、癌症、新陈代谢紊乱等疾病的生物学机理和治疗方法的相关性进行综述。  相似文献   

2.
去乙酰化酶Sirtuin研究进展   总被引:4,自引:0,他引:4  
蔡群芳  周鹏 《生命科学》2006,18(2):133-137
依赖于NAD 的去乙酰化酶Sirtuin对细胞的存活、衰老、凋亡等生理活动的调节起到十分重要的作用。Sirtuin系统中的ySir2和SIRT1就目前来说是研究得较为透彻的两个成员。ySir2参与了酵母的交配型基因沉默、端粒的沉默、rDNA重复序列的沉默以及细胞寿命等生理功能。人类SIRT1在细胞存活与代谢等过程中也起到调节作用。本文对Sirtuin的结构、作用机制、底物特异性、影响因子及其功能作了综述。  相似文献   

3.
Sir2作为一种NAD依赖性的去乙酰化酶,可延长酵母、线虫以及果蝇等多种生物的寿命。SIRT1是哺乳动物中Sir2的同源蛋白。已知,细胞在应激状态下,SIRT1可调节某些信号通路以保持其生存能力。但在非应激状态,即生理状态下,它是否影响细胞生存能力及衰老进程,不得而知。最近研究表明,SIRT1的过表达可促进体外培养的人胚肺成纤维细胞的生长,延缓细胞衰老。  相似文献   

4.
Sirtuin1(SIRT1)活性的异常与血管内皮细胞的衰老密切相关。大蒜素作为一种生物活性分子具有抗氧化、抗炎及调脂作用,然而目前尚未见关于大蒜素与SIRT1的活性调节的报道。本研究旨在阐明大蒜素对过氧化氢(H2O2)诱导人脐静脉内皮细胞(HUVECs)衰老的影响,以及Sirtuin1(SIRT1)在其中的作用。SA-β-gal染色及活性氧检测提示,与对照组相比,大蒜素明显减少H2O2诱导半乳糖苷酶阳性细胞数及活性氧的产生。用Western印迹、MTT、RT-PCR及SIRT1活化检测对SIRT1、p-SIRT1、PAI-1的蛋白质、SIRT1mRNA表达及细胞活力进行检测,结果显示,大蒜素可以逆转H2O2诱导的PAI-1表达的升高、SIRT1磷酸化及活性的降低,并且上调细胞的活力。当采用SIRT1抑制剂NAM处理后,大蒜素的这些作用均被阻断。以上结果表明,大蒜素通过激活SIRT1抑制H2O2诱导的HUVECs ROS的产生、活力的下降及细胞的衰老。  相似文献   

5.
Yang WJ  Wang DL  Zhu WG 《遗传》2010,32(10):1003-1008
SIRT1是哺乳动物中重要的NAD+依赖性去乙酰化酶,参与许多重要的生理和病理过程,如衰老、细胞死亡和肿瘤发生。如何精确调节SIRT1的表达和活性对SIRT1执行其生物学功能至关重要。文章以基因表达的不同阶段为切入点,对调控SIRT1表达及活性的机制进行了论述。  相似文献   

6.
DNA损伤的发生与积累是造成细胞功能紊乱的根本原因,也是引起衰老与肿瘤等疾病发生的关键事件。为维持机体自身遗传物质的完整性与稳定性,生物体内拥有多种针对不同类型DNA损伤的修复方式。Sirtuin蛋白是一组NAD+依赖的、高度保守的组蛋白去乙酰化酶,可通过去乙酰化作用调节众多底物蛋白质的表达、活性与稳定性。 近来的研究显示,DNA损伤修复途径的多个关键蛋白质是Sirtuin的下游底物。Sirtuin蛋白通过调节同源重组修复、非同源末端修复、核苷酸切除修复等途径中的核心蛋白质参与修复包括双链断裂(double stranded breakes, DSBs)在内的多种DNA损伤类型,从而在维持基因组稳定性、寿命以及细胞能量代谢调节等一系列生物学作用中发挥至关重要的作用。本综述将介绍近年来Sirtuin与DNA损伤修复的研究进展。  相似文献   

7.
Sirtuins家族蛋白是一类依赖NAD的去乙酰化酶,属于第Ш类去乙酰化酶(HDACs),哺乳动物Sirtuins家族成员共有7个(SIRT1-7),其主要具有去乙酰化酶的活性,可以使多种蛋白发生去乙酰化,进而参与DNA的损伤修复、基因的转录调控、细胞凋亡、代谢及衰老等诸多生物进程。本文主要对Sirtuins家族在DNA损伤修复中的作用及其相关机制进行阐述。  相似文献   

8.
SIRT1的生物学功能及其在胰岛素抵抗中的作用   总被引:2,自引:0,他引:2  
SIRT1是NAD+依赖的组蛋白去乙酰化酶,通过使底物发生去乙酰化作用参与了DNA修复、细胞凋亡/细胞生存、细胞分化、内分泌信号通路和衰老等生命过程的调节.SIRT1在胰岛素敏感的组织器官中,通过调节胰岛素相关蛋白之间的相互作用与胰岛素信号转导途径,改善胰岛素敏感性和胰岛素抵抗,并且SIRT1在线粒体损伤中的作用与胰岛素抵抗发生有着密切的联系.  相似文献   

9.
Sirtuin 1(SIRT1)是组蛋白去乙酰化酶的代表性成员,除可调节代谢、衰老、凋亡外,SIRT1还可通过催化组蛋白及核因子κB(NF-κB)、激活蛋白1(AP-1)等的去乙酰化,从而改变染色质构象、降低转录因子活性、下调炎症基因转录。临床研究已揭示SIRT1在某些炎症性疾病中含量明显降低,而动物实验证实白藜芦醇、SRT1720等SIRT1激活剂可有效减轻炎症损伤。因而,SIRT1有望成为抗炎治疗的新靶点。  相似文献   

10.
 复制衰老是啤酒酵母衰老形式之一,表现出芽痕累积、细胞体积变大、不对称分裂丧失、不育、核仁脆裂和代谢变化等特征.染色体外rDNA环累积是啤酒酵母复制衰老的重要原因,而组蛋白去乙酰化酶家族成员Sir2蛋白在调节染色体外rDNA环累积、啤酒酵母衰老和寿命方面起到核心作用.作为去乙酰化反应底物的NAD+正性调节Sir2组蛋白去乙酰化酶活性,NAD+代谢产物尼克酰胺对Sir2有负性调节作用,而有尼克酰胺参与的NAD+补救合成途径对于Sir2活性十分重要.目前,已经在人等动物细胞中发现参与这些调节过程的相关蛋白的同源基因,在功能上也表现出一定的相似性.啤酒酵母的衰老机制研究将为人体衰老的认识提供重要线索.  相似文献   

11.
Calorie restriction (CR) extends lifespans in a wide variety of species. CR induces an increase in the NAD+/NADH ratio in cells and results in activation of SIRT1, an NAD+-dependent protein deacetylase that is thought to be a metabolic master switch linked to the modulation of lifespans. CR also affects the expression of peroxisome proliferator-activated receptors (PPARs). The three subtypes, PPARα, PPARγ, and PPARβ/δ, are expressed in multiple organs. They regulate different physiological functions such as energy metabolism, insulin action and inflammation, and apparently act as important regulators of longevity and aging. SIRT1 has been reported to repress the PPARγ by docking with its co-factors and to promote fat mobilization. However, the correlation between SIRT1 and other PPARs is not fully understood. CR initially induces a fasting-like response. In this study, we investigated how SIRT1 and PPARα correlate in the fasting-induced anti-aging pathways. A 24-h fasting in mice increased mRNA and protein expression of both SIRT1 and PPARα in the livers, where the NAD+ levels increased with increasing nicotinamide phosphoribosyltransferase (NAMPT) activity in the NAD+ salvage pathway. Treatment of Hepa1-6 cells in a low glucose medium conditions with NAD+ or NADH showed that the mRNA expression of both SIRT1 and PPARα can be enhanced by addition of NAD+, and decreased by increasing NADH levels. The cell experiments using SIRT1 antagonists and a PPARα agonist suggested that PPARα is a key molecule located upstream from SIRT1, and has a role in regulating SIRT1 gene expression in fasting-induced anti-aging pathways.  相似文献   

12.
SIRT2 induces the checkpoint kinase BubR1 to increase lifespan   总被引:1,自引:0,他引:1  
Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1H/H) live shorter and show signs of accelerated aging. As wild‐type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age‐related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1‐7) are a family of NAD+‐dependent deacetylases that can delay age‐related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD+ and the ability of SIRT2 to maintain lysine‐668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD+ precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1H/H animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD+ to delay diseases of aging in mammals is warranted.  相似文献   

13.
Sirtuin1 (SIRT1) deacetylase and poly(ADP-ribose)-polymerase-1 (PARP-1) respond to environmental cues, and both require NAD+ cofactor for their enzymatic activities. However, the functional link between environmental/oxidative stress-mediated activation of PARP-1 and SIRT1 through NAD+ cofactor availability is not known. We investigated whether NAD+ depletion by PARP-1 activation plays a role in environmental stimuli/oxidant-induced reduction in SIRT1 activity. Both H2O2 and cigarette smoke (CS) decreased intracellular NAD+ levels in vitro in lung epithelial cells and in vivo in lungs of mice exposed to CS. Pharmacological PARP-1 inhibition prevented oxidant-induced NAD+ loss and attenuated loss of SIRT1 activity. Oxidants decreased SIRT1 activity in lung epithelial cells; however increasing cellular NAD+ cofactor levels by PARP-1 inhibition or NAD+ precursors was unable to restore SIRT1 activity. SIRT1 was found to be carbonylated by CS, which was not reversed by PARP-1 inhibition or selective SIRT1 activator. Overall, these data suggest that environmental/oxidant stress-induced SIRT1 down-regulation and PARP-1 activation are independent events despite both enzymes sharing the same cofactor.  相似文献   

14.
Acute kidney injury (AKI) is a substantial worldwide public health concern with no specific and effective therapies in clinic. NAD+ is a pivotal determinant of cellular energy metabolism involved in the progression of AKI; however, its mechanism in kidney injury remains poorly understood. Sirtuin 1 (SIRT1) is an NAD+‐dependent deacetylase associated with renal protection and acute stress resistance. In this study, we have investigated the role of NAD+ in AKI and the potential mechanism(s) involved in its renoprotective effect. NAD+ was notably decreased and negatively correlated with kidney dysfunction in AKI, restoring NAD+ with NMN significantly ameliorates LPS‐induced oxidative stress and apoptosis and attenuates renal damage. We also found that the protection of NAD+ is associated with SIRT1 expressions and performs in a SIRT1‐dependent manner. Inhibition of SIRT1 blunted the protective effect of NAD+ and up‐regulated the activity of glycogen synthase kinase‐3β (GSK‐3β) that was concomitant with mitigated Nrf2 nuclear accumulation, thereby exacerbates AKI. These findings suggest that NAD+/SIRT1/GSK‐3β/Nrf2 axis is an important mechanism that can protect against AKI which might be a potential therapeutic target for the treatment of AKI.  相似文献   

15.
Interventions that slow aging and prevent chronic disease may come from an understanding of how dietary restriction (DR) increases lifespan. Mechanisms proposed to mediate DR longevity include reduced mTOR signaling, activation of the NAD+‐dependent deacylases known as sirtuins, and increases in NAD+ that derive from higher levels of respiration. Here, we explored these hypotheses in Caenorhabditis elegans using a new liquid feeding protocol. DR lifespan extension depended upon a group of regulators that are involved in stress responses and mTOR signaling, and have been implicated in DR by some other regimens [DAF‐16 (FOXO), SKN‐1 (Nrf1/2/3), PHA‐4 (FOXA), AAK‐2 (AMPK)]. Complete DR lifespan extension required the sirtuin SIR‐2.1 (SIRT1), the involvement of which in DR has been debated. The nicotinamidase PNC‐1, a key NAD+ salvage pathway component, was largely required for DR to increase lifespan but not two healthspan indicators: movement and stress resistance. Independently of pnc‐1, DR increased the proportion of respiration that is coupled to ATP production but, surprisingly, reduced overall oxygen consumption. We conclude that stress response and NAD+‐dependent mechanisms are each critical for DR lifespan extension, although some healthspan benefits do not require NAD+ salvage. Under DR conditions, NAD+‐dependent processes may be supported by a DR‐induced shift toward oxidative metabolism rather than an increase in total respiration.  相似文献   

16.
17.
18.
Sirtuin 2 (SIRT2) is a member of a family of NAD+‐dependent histone deacetylases (HDAC) that play diverse roles in cellular metabolism and especially for aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination. However, little is known about the role of SIRT2 in the nervous system specifically during aging. Here, we show that middle‐aged, 13‐month‐old mice lacking SIRT2 exhibit locomotor dysfunction due to axonal degeneration, which was not present in young SIRT2 mice. In addition, these Sirt2?/? mice exhibit mitochondrial depletion resulting in energy failure, and redox dyshomeostasis. Our results provide a novel link between SIRT2 and physiological aging impacting the axonal compartment of the central nervous system, while supporting a major role for SIRT2 in orchestrating its metabolic regulation. This underscores the value of SIRT2 as a therapeutic target in the most prevalent neurodegenerative diseases that undergo with axonal degeneration associated with redox and energetic dyshomeostasis.  相似文献   

19.
SIRT6 is a key member of the mammalian sirtuin family of conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. Previous studies have shown that SIRT6 can regulate metabolism, DNA damage repair and aging. Ovarian aging process usually share similar mechanisms with general aging, which is characterized by decreases in both numbers of ovarian follicles and the quality of oocytes. It is reported that the expression level of SIRT6 was significantly decreased in the ovaries of aged mice, and the level of SIRT6 was positively correlated with ovarian reserve, indicating that SIRT6 may be potential markers of ovarian aging. However, its biological roles in follicular development are still unclear. Here, we explored the effect of SIRT6 on follicular development and found that ovarian development was interrupted in SIRT6 knockout (KO) mice, leading to disruptions of puberty and the estrus cycle, significant decreases in numbers of secondary and antral follicles, and decreased collagen in the ovarian stroma. Plod1, a lysyl hydroxylase that is vital for collagen crosslinking and deposition, was decreased at both the mRNA and protein levels in SIRT6-deficient ovaries and granulosa cells (GCs). Additionally, we found abnormal estrogen levels in both SIRT6 KO mice and SIRT6 KD GCs, accompanied by decreases in the levels of the estrogen biosynthesis genes Cyp11a1, Cyp19a1, Mgarp, and increases in the levels of TNF-α and NF-κB. These results confirmed the effect of SIRT6 on follicular development and revealed a possible molecular mechanism for SIRT6 involvement in follicular development via effects on estrogen biosynthesis and collagen formation.  相似文献   

20.
Aging research has developed rapidly over the past decade, identifying individual genes and molecular mechanisms of the aging process through the use of model organisms and high throughput technologies. Calorie restriction (CR) is the most widely researched environmental manipulation that extends lifespan. Activation of the NAD+‐dependent protein deacetylase Sir2 (S ilent I nformation R egulator 2) has been proposed to mediate the beneficial effects of CR in the budding yeast Saccharomyces cerevisiae, as well as other organisms. Here, we show that in contrast to previous reports, Sir2 is not stimulated by CR to strengthen silencing of multiple reporter genes in the rDNA of S. cerevisiae. CR does modestly reduce the frequency of rDNA recombination, although in a SIR2‐independent manner. CR‐mediated repression of rDNA recombination also does not correlate with the silencing of Pol II‐transcribed noncoding RNAs derived from the rDNA intergenic spacer, suggesting that additional silencing‐independent pathways function in lifespan regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号