首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell func- tions. Cytoskeleton, as an intracellular load-bearing struc- ture, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskele- ton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.  相似文献   

2.
Osteoporosis (OP), one of the most prevalent chronic progressive bone diseases, is caused by deficiency in bone formation by osteoblasts or excessive bone resorption by osteoclasts and subsequently increases the risk of bone fractures. Emerging evidence has indicated that long noncoding RNAs (lncRNAs) play key roles in many biological processes and various disorders. However, the role and mechanism of HOX antisense intergenic RNA myeloid 1 (HOTAIRM1), a myeloid-specific lncRNA, in osteoclast differentiation, osteogenic differentiation, and OP remain unclear. In this study, we found that HOTAIRM1 was upregulated during ossification of ligamentum flavum and osteogenic differentiation, while it was downregulated in osteoclast differentiation and in the bone and serum of human and mouse with OP. Further investigation revealed that silencing Hotairm1 decreased the expression of the osteogenic markers and attenuated osteogenesis. Moreover, forced Hotairm1 expression inhibited the expressions of the osteoclastogenesis markers and alleviated receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation. Mechanically, Hotairm1 repressed the phosphorylation of p65 and inhibitor of κBα (IκBα) and attenuated RANKL-mediated enhancement of phos-p65 and IκBα, suggesting that Hotairm1 inhibits RANKL-induced osteoclastogenesis through the NF-κB pathway. In conclusion, our data identified a crucial role of HOTAIRM1 in OP, providing a proof of this molecule as a potential diagnostic marker and a possible therapeutic target against OP.  相似文献   

3.
Human osteosarcoma MG-63 cells were induced into differentiation by 5 mmol/L hexamethylene bisacetamide (HMBA). Their nuclear matrix proteins (NMPs) were selectively extracted and subjected to two-dimensional gel electrophoresis analysis. The results of protein patterns were analyzed by Melanie software. The spots of differentially expressed NMPs were excised and subjected to in situ digestion with trypsin. The maps of peptide mass fingerprinting were obtained by MALDI-TOF-MS analysis, and were submitted for NCBI database searches by Mascot tool. There were twelve spots changed remarkably during the differentiation induced by HMBA, nine of which were identified. The roles of the regulated proteins during the MG-63 differentiation were analyzed. This study suggests that the induced differentiation of cancer cells is accompanied by the changes of NMPs, and confirms the presence of some specific NMPs related to the cancer cell proliferation and differentiation. The changed NMPs are potential markers for cancer diagnosis or targets for cancer therapy.  相似文献   

4.
To study the cytotoxic effects and antitumour mechanism of norcantharidin(NCTD) on human breast cancer cell, MCF-7 cells were exposed to culture medium with NCTD in different doses and hours. The cell growth inhibition curves of NCTD on MCF-7 cells were acquired by detecting the growth ratio of MCF-7 cells with MTT methods. The results indicated that NCTD had inhibition effects on growth of MCF-7 cells depending on the doses and times of treatment. When the concentrations of NCTD used was lower than 5 μg/ml, the cells grew as same as the control cells. With increasing doses and times of treatment, the inhibition effects of NCTD on the cells' growth increased, for example, when exposed to 10 μg/ml NCTD  相似文献   

5.
Osteoporosis is a systemic bone disease, which leads to decreased bone mass and an increased risk of fragility fractures. Currently, there are many anti-resorption drugs and osteosynthesis drugs, which are effective in the treatment of osteoporosis, but their usage is limited due to their contraindications and side effects. In regenerative medicine, the unique repair ability of mesenchymal stem cells(MSCs) has been favored by researchers. The exosomes secreted by MSCs have signal transduction an...  相似文献   

6.
Chen Y  Li HH  Fu J  Wang XF  Ren YB  Dong LW  Tang SH  Liu SQ  Wu MC  Wang HY 《Cell research》2007,17(12):1020-1029
p28^GANK (also known as PSMD 10, p28 and gankyrin) is an ankyrin repeat anti-apoptotic oncoprotein that is commonly overexpressed in hepatocellular carcinomas and increases the degradation of p53 and Rb. NF-IκB (nuclear factor-κB) is known to be sequestered in the cytoplasm by IκB (inhibitor of NF-κB) proteins [1, 2], but much less is known about the cytoplasmic retention of NF-κB by other cellular proteins. Here we show that p28^GANK inhibits NF-κB activity. As a nuclear-cytoplasmic shuttling protein, p28^GANK directly binds to NF-κB/RelA and exports RelA from nucleus through a chromosomal region maintenance-1 (CRM-1) dependent pathway, which results in the cytoplasmic retention of NF- κB/RelA. We demonstrate that all the ankyrin repeats of p28^GANK are required for the interaction with RelA and that the N terminus of p28^GANK, which contains the nuclear export sequence (NES), is responsible for suppressing NF-κB/RelA nuclear translocation. These results suggest that overexpression of p28^GANK prevents the nuclear localization and inhibits the activity of NF-κB/RelA.  相似文献   

7.
The present study investigated whether boron would enhance the action of 17β-estradiol (E2) or parathyroid hormone (PTH) on bone mineral balance in ovariectomized (OVX) rats. Forty-three days after OVX, the rats were treated for 5 wk with vehicle, boron (5 ppm as boric acid), E2 (30 μg/kg/d, sc), PTH (60 μg/kg/d, sc), or a combination of boron and E2 or PTH. Bone mineral balance was assessed by measuring apparent absorption, excretion, and retention of calcium (Ca), phosphorus (P), and magnesium (Mg). Serum Ca, P, Mg, and osteocalcin were also measured in this experiment. Boron alone had no effects on food consumption, weight gain, bone mineral balance, and serum levels of Ca, P, Mg, and osteocalcin. E2 alone increased serum P and Mg and decreased serum osteocalcin, but it had no effect on bone mineral balance. The combination of boron and E2 markedly improved apparent absorption of Ca, P, and Mg. In addition, the combination treatment increased the apparent retention of Ca and Mg (but not P) and also increased serum Ca and Mg but not serum P. On the other hand, boron cotreatment did not prevent the E2-induced reduction in serum osteocalcin in OVX rats. PTH alone significantly increased serum Ca, P, Mg, and osteocalcin concentrations, although it had no effect on bone mineral balance. Contrary to the boron-E2 combination treatment, the combination of boron and PTH did not enhance bone mineral balance. However, inasmuch as boron-PTH cotreatment did not enhance the stimulatory action of PTH on serum Ca, P, and osteocalcin, boron completely abolished the stimulatory effect of PTH on serum Mg. In conclusion, we have demonstrated for the first time that although boron by itself has no effect on bone mineral homeostasis, it appears to have synergistic enhancing effects on the action of E2 on Ca and Mg homeostasis in OVX rats.  相似文献   

8.
Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment applications.This study was carried out to explore the biocompatibility of scaffolds to seeding cells in vitro.Rod-like nano-hydroxyapatite(RN-HA)and flake-like micro-hydroxyapatite(FM-HA)coatings were prepared on Mg-Zn-Ca alloy substrates using micro-arc oxidation and electrochemical deposition.WJCs were utilized to investigate the cellular biocompatibility of Mg-Zn-Ca alloys after different surface modifications by observing the cell adhesion,morphology,proliferation,and osteoblastic differentiation.The in vitro results indicated that the RN-HA coating group was more suitable for cell proliferation and cell osteoblastic differentiation than the FM-HA group,demonstrating better biocompatibility.Our results suggested that the RN-HA coating on Mg-Zn-Ca alloy substrates might be of great potential in bone tissue engineering.  相似文献   

9.
10.
Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P 〈 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P 〈 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P 〈 0.001), as well as 72.59% variation within populations (P 〈 0.001). Molecular variation within populations was significantly different among 16 populations.  相似文献   

11.
Endotoxin lipopolysaccharide (LPS) plays an important role in the acceleration of inflammatory reaction of hepa- titis as the second attack. Compounds that can prevent in- flammation by targeting LPS have potential therapeutic clinical application. Epigallocatechin-3-gallate (EGCG) has potent hepatocyte-protective effect and mild anti-hepatitis virus function. Here, we investigated whether EGCG attenuated the severity of inflammatory response in LPS-stimulated L02 hepatocytes. L02 hepatocytes were pretreated with EGCG for 2 h, then stimulated by LPS at 250 ng/ml. The expression levels of chemokine regulated upon activation normal T-cell expressed and secreted (Rantes) and monocyte chemotactic protein-1 (MCP-1), pro-inflammatory cytokines tumor necrosis factor-α (TNF-α and interferon-% adhesion molecule intercellular adhesion molecule-1 (ICAM-1), oxidant stress molecules nitric oxide (NO), vascular endothelial growth factor (VEGF), and matrix metaHoproteinase-2 (MMP-2) were tested by enzyme-linked immunosorbent assay. The expression of total extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), p-AKT, total p38, phospho-p38 (p-p38), total p65 and phospho-p65 (p-p65), IκBα, phospho-IκBα(p-IκBα and TNF receptor associated factor 2 were tested by western blot analysis. Our results showed that pre-treatment with EGCG could significantly reduce the production of TNF-α, Rantes, MCP-1, ICAM-1, NO, VEGF, and MMP-2 in LPS-stimulated L02 hepatocytes in a dose-dependent manner. The effect of EGCG may be related to the inhibition of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by down-regulation of p-IκBα, p65, p-p65, p-p38, p-ERK1/2, and p-AKT. These results indicate that EGCG suppresses LPS-induced inflammatory response and oxidant stress and exerts its hepatocyte-protective activity partially by inhibiting NF-κB and MAPK pathways.  相似文献   

12.
The insecticidal activity of Acorus calamus L. rhizome-derived material against adults of Sitophilus zeamais Motschulsky was examined by using repellency method and contact toxicity. The biologically active constituent of the A. calamus rhizome was separated and identified. The results showed that the ethanol extract of A. calamus had strong repellency and contact effect to S. zeamais and the active constituent of the A. calamus was characterized as (Z)-asarone by spectroscopic analysis. Responses from the tests varied with exposure times and doses. In the repellency test, ethanol extract of A. calamus had 93.92% repellency at 629.08 μg/cm^2 but only 71.38% at 157.27 μg/cm^2 12 h after treatment. As a contrast, (Z)-asarone showed 84.50% repellency at 314.54μg/cm^2 and 77.02% at 78.63 μg/cm^2 12 h after treatment. In the filter paper diffusion test, ethanol extract of A. calamus caused 95.56% and 17.78% mortality to S. zeamais at 314.54 μg/cm^2 and 78.63 μg/ cm^2 4 days after treatment, while (Z)-asarone brought about 100.00% and 15.56% mortality at 40.89 μg/cm^2 and 15.73 μg/cm^2 respectively. These results indicate that the insecticidal activity of the A. calamus extract may be due to (Z)-asarone.  相似文献   

13.
14.
LIM mineralization protein-1 (LMP-1) is a novel intracellular osteoinductive protein that has been shown to induce bone formation both in vitro and in viva. LMP-1 contains an N-terminal PDZ domain and three C-terminal LIM domains. In this study, we investigated whether a truncated form of human LMP-1 (hLMP-1 [t]), lacking the three C-terminal LIM domains, triggers the differentiation of pluripotent myoblastic C2C12 cells to the osteoblast lineage. C2C12 cells were transiently transduced with AdS-hLMP-1 (t)-green fluorescent protein or viral vector control. The expression of hLMP-1 (t) RNA and the truncated protein were examined. The results showed that hLMP-1 (t) blocked myotube formation in C2C12 cultures and significantly enhanced the alkaline phosphatase (ALP) activity. In addition, the expressions of ALP, osteocalcin, and bone morphogenetic protein (BMP)-2 and BMP-7 genes were also increased. The induction of these key osteogenic markers suggests that hLMP- 1 (t) can trigger the pluripotent myoblastic C2C12 cells to differentiate into osteoblastic lineage, thus extending our previous observation that LMP-1 and LMP-1 (t) enhances the osteoblastic phenotype in cultures of cells already committed to the osteoblastic lineage. Therefore, C2C12 cells are an appropriate model system for the examination of LMP-1 induction of the osteoblastic phenotype and the study of mechanisms of LMP-1 action.  相似文献   

15.
To assess the mechanisms of modest hypothermia (MH) and its effects on cellular radiation response, a model of anesthesia-induced modest hypothermia (AIMH) in the adult mice and a model of pure MH in the newborn mice were established. The survival rate of lethally irradiated mice was increased to 72% through AIMH before irradiation. Both apoptosis and necrosis of human fetal bone marrow CD34+ hematopoietic stem cells cultured under MH were significantly decreased as detected by MTT and flow cytometry, with three-color labeled by PE-CD34+/ FITC-AnnexinV /7AAD. The survival and proliferation of mouse bone marrow MNC treated with MH after irradiation were also increased. The MH exerted similar protective effects on the leukemia cell lines A20, HL60, K562 to the normal bone marrow cells, but it enhanced the radiation sensitivity of leukemia cell line FBL3 and mouse melanoma B16F10. No effects have been found on the radiation sensitivity of those cells treated with MH before irradiation. The results also show  相似文献   

16.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

17.
In this study, we assessed the toxic effects of formaldehyde (FA) on mouse bone marrow mesenchymai stem cells (BM- MSCs). Cytotoxicity was measured by using MTT assay. DNA strand breakage was detected by standard alkaline comet assay and comet assay modified with proteinase K (PK). DNA-protein crosslinks (DPCs) were detected by KCI-SDS precipitation assay. We found that FA at a con- centration from 75 to 200 μM inhibited cell survival and induced DPCs over 125 μM. The PK-modified comet assay showed that FA-induced DNA strand breakage was increased in a dose-dependent manner from 75 to 200 μM. On the other hand, standard alkaline comet assay showed that DNA strand breakage was decreased with FA concen- tration over 125 μM. We confirmed by using Pearson cor- relation that there was a negative linear correlation between DPCs and survival rate (r = -0.987, P 〈 0.01) and positive linear relationships between DPCs and (i) sister chromatid exchange and (ii) micronucleus (r = 0.995, P〈 0.01; r = 0.968, P〈 0.01). DNA damage RTz profiler polymerase chain reaction array was used to investigate the changes in the expression of damage response genes. Xpa and Xpc of the nucleotide excision repair pathway and Brca2, Rad51, and Xrcc2 of the homologous recombination pathway were all up-regulated in both 75 and 125 μM FA. However, the same genes were down-regulated with 175 μM FA. The expressions of Chekl and Husl, which are involved in cell cycle regulation, were altered in the same manner with 75, 125, and 175 μM FA. These results indicated that Xpa, Xpc, Brca2, Rad51, Xrcc2, Chekl, and Husl were essential for the BM-MSCs to counteract the effects of FA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号