首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium and phosphorus transport and signaling in plants   总被引:2,自引:0,他引:2  
Nitrogen(N), potassium(K), and phosphorus(P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice(Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.  相似文献   

2.
Vitamins maintain growth and development in humans, animals, and plants. Because plants serve as essential producers of vitamins, increasing the vitamin contents in plants has become a goal of crop breeding worldwide. Here, we begin with a summary of the functions of vitamins. We then review the achievements to date in elucidating the molecular mechanisms underlying how vitamins are synthesized, transported, and regulated in plants. We also stress the exploration of variation in vitamins by the use of forward genetic approaches, such as quantitative trait locus mapping and genome-wide association studies. Overall, we conclude that exploring the diversity of vitamins could provide new insights into plant metabolism and crop breeding.  相似文献   

3.
4.
5.
Wang L  Xu YY  Ma QB  Li D  Xu ZH  Chong K 《Cell research》2006,16(12):916-922
  相似文献   

6.
Cell polarity plays an important role in a wide range of biological processes in plant growth and development.Cell polarity is manifested as the asymmetric distribution of molecules,for example,proteins and lipids,at the plasma membrane and inside of a cell.Here,we summarize a few polarized proteins that have been characterized in plants and we review recent advances towards understanding the molecular mechanism for them to polarize at the plasma membrane.Multiple mechanisms,including membrane trafficking,cytoskeletal activities,and protein phosphorylation,and so forth define the polarized plasma membrane domains.Recent discoveries suggest that the polar positioning of the proteo-lipid membrane domain may instruct the formation of polarity complexes in plants.In this review,we highlight the factors and regulators for their functions in establishing the membrane asymmetries in plant development.Furthermore,we discuss a few outstanding questions to be addressed to better understand the mechanisms by which cell polarity is regulated in plants.  相似文献   

7.
Molecular strategies of plant defense and insect counter-defense   总被引:13,自引:0,他引:13  
The prediction of human population growth worldwide indicates there will be a need to substantially increase food production in order to meet the demand on food supply.This can be achieved in part by the effective management of insect pests. Since plants have co-evolved with herbivorous insects for millions of years, they have developed an array of defense genes to protect themselves against a wide variety of chewing and sucking insects.Using these naturally-occurring genes via genetic engineering represents an environmentally friendly insect pest-control measure. Insects, however, have been actively evolving adaptive mechanisms to evade natural plant defenses. Such evolved adaptability undoubtedly has helped insects during the last century to rapidly overcome a great many humanimposed management practices and agents, including chemical insecticides and genetically engineered plants. Thus, better understanding of the molecular and genetic basis of plant defense and insect counter-defense mechanisms is imperative, not only from a basic science perspective, but also for biotechnology-based pest control practice. In this review, we emphasize the recent advance and understanding of molecular strategies of attack-counterattack and defense-counter-defense between plants and their herbivores.  相似文献   

8.
Under nutrient‐limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal(AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi,relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis‐specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression.  相似文献   

9.
The interaction between plants and pathogens represents a dynamic competition between a robust immune system and efficient infectious strategies. Plant innate immunity is composed of complex and highly regulated molecular networks, which can be triggered by the perception of either conserved or race‐specific pathogenic molecular signatures. Small RNAs are emerging as versatile regulators of plant development, growth and response to biotic and abiotic stresses. They act in different tiers of plant immunity, including the pathogen‐associated molecular pattern‐triggered and the effector‐triggered immunity. On the other hand, pathogens have evolved effector molecules to suppress or hijack the host small RNA pathways. This leads to an arms race between plants and pathogens at the level of small RNA‐mediated defense.Here, we review recent advances in small RNA‐mediated defense responses and discuss the challenging questions in this area.  相似文献   

10.
11.
The Genetic and Molecular Basis of Plant Resistance to Pathogens   总被引:1,自引:0,他引:1  
Plant pathogens have evolved numerous strategies to obtain nutritive materials from their host,and plants in turn have evolved the preformed physical and chemical barriers as well as sophisticated two-tiered immune system to combat pathogen attacks.Genetically, plant resistance to pathogens can be divided into qualitative and quantitative disease resistance,conditioned by major gene(s) and multiple genes with minor effects,respectively.Qualitative disease resistance has been mostly detected in plant defense against biotrophic pathogens,whereas quantitative disease resistance is involved in defense response to all plant pathogens,from biotrophs,hemibiotrophs to necrotrophs.Plant resistance is achieved through interception of pathogen-derived effectors and elicitation of defense response.In recent years,great progress has been made related to the molecular basis underlying host-pathogen interactions.In this review,we would like to provide an update on genetic and molecular aspects of plant resistance to pathogens.  相似文献   

12.
Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness. Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively. On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy. Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood. Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes. Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth. We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant, upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem. Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem. We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes. Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling, cell division and plant secondary tissue growth. These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.  相似文献   

13.
14.
In high-light environments, plants are exposed to different types of stresses, such as an excess of UV-B, but also drought stress which triggers a common morphogenic adaptive response resulting in a general reduction of plant growth. Here, we report that the Arabidopsis thaliana UVRESISTANCE LOCUS 8 (UVR8) gene, a known regulator of the UV-B morphogenic response, was able to complement a Saccharomyces cerevisiae osmo-sensitive mutant and its expression was induced after osmotic or salt stress in Arabidopsis plants. Under low levels of UV-B, plants overexpressing UVR8 are dwarfed with a reduced root development and accumulate more flavonoids compared to control plants. The growth defects are mainly due to the inhibition of cell expansion. The growth inhibition triggered by UVR8 overexpression in plants under low levels of UV-B was exacerbated by mannitol-induced osmotic stress, but it was not significantly affected by ionic stress. In contrast, uvr8-6 mutant plants do not differ from wild-type plants under standard conditions, but they show an increased shoot growth under high-salt stress. Our data suggest that UVR8-mediated accumulation of flavonoid and possibly changes in auxin homeostasis are the underlying mechanism of the observed growth phenotypes and that UVR8 might have an important role for integrating plant growth and stress signals.  相似文献   

15.
16.
Reactive oxygen species and auxin play important roles in the networks that regulate plant development and morphogenetic changes, However, the molecular mechanisms underlying the interactions between them are poorly understood. This study isolated a mas (More Axillary Shoots) mutant, which was identified as an allele of the mitochondrial AAA-protease AtFtSH4, and characterized the function of the FtSH4 gene in regulating plant development by medi- ating the peroxidase-dependent interplay between hydrogen peroxide (H2Oz) and auxin homeostasis. The phenotypes of dwarfism and increased axillary branches observed in the mas (renamed as ftsh4-4) mutant result from a decrease in the IAA concentration. The expression levels of several auxin signaling genes, including IAA1, IAA2, and IAA3, as well as several auxin binding and transport genes, decreased significantly in ftsh4-4 plants. However, the H202 and peroxidases levels, which also have IAA oxidase activity, were significantly elevated in ftsh4-4 plants. The ftsh4-4 phenotypes could be reversed by expressing the iaaM gene or by knocking down the peroxidase genes PRX34 and PRX33. Both approaches can increase auxin levels in the ftsh4-4 mutant. Taken together, these results provided direct molecular and genetic evidence for the interaction between mitochondrial ATP-dependent protease, H2O2, and auxin homeostasis to regulate plant growth and development.  相似文献   

17.
18.
Heterotrimeric G proteins are involved in multiple cellular processes in eukaryotes by sensing and transducing various signals. G protein signaling in plants is quite different from that in animals, and the mechanisms of plant G protein signaling are still largely unknown. Several recent studies have provided new insights into the mechanisms of G protein signaling in rice grain size and yield control. In this review,we summarize recent advances on the function of G proteins in rice grain size control and discuss the potential genetic and molecular mechanisms of plant G protein signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号