首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the structure of oocyte and somatic 5S ribosomal RNA and of 5S RNA encoding genes in Xenopus tropicalis. The sequences of the two 5S RNA families differ in four positions, but only one of these substitutions, a C to U transition in position 79 within the internal control region of the corresponding 5S RNA encoding genes, is a distinguishing characteristic of all Xenopus somatic and oocyte 5S RNAs characterized to date, including those from Xenopus laevis and Xenopus borealis. 5S RNA genes in Xenopus tropicalis are organized in clusters of multiple repeats of a 264 base pair unit; the structural and functional organization of the Xenopus tropicalis oocyte 5S gene is similar to the somatic but distinct from the oocyte 5S DNA in Xenopus laevis and Xenopus borealis. A comparative sequence analysis reveals the presence of a strictly conserved pentamer motif AAAGT in the 5'-flanking region of Xenopus 5S genes which we demonstrate in a separate communication to serve as a binding signal for an upstream stimulatory factor.  相似文献   

2.
Summary We have built the phylogenetic tree of Vertebrate 5S RNA using the sequence data of thirteen species belonging to six groups. Evolution of the 5S genes has been very slow in Vertebrates since 90 residues are identical in all 5S RNAs which are presently sequenced.In Amphibians and Teleosts different 5S genes are active in oocytes and in somatic cells. This dual gene system has probably been acquired independently by Amphibians and Teleosts. In Amphibians, the oocyte-type 5S genes have evolved much faster than the somatic-type genes. This is not true in all species since the oocyte-type genes of one Teleost (Tinca tinca) have evolved more slowly than the somatic-type genes.There are in all Vertebrate 5S RNAs five complementary regions which can be base-paired. The sequence data are compatible with the three secondary-structure models that have been proposed for 5S RNA.  相似文献   

3.
Summary The organization of the 5S genes in the genome of Tetrahymena thermophila was examined in various strains, with germinal ageing, and the 5S gene clusters were mapped to the MIC chromosomes. When MIC or MAC DNA is cut with the restriction enzyme EcoRI, electrophoresed, blotted, and probed with a 5S rDNA probe, the banding patterns represent the clusters of the 5S rRNA genes as well as flanking regions. The use of long gels and 60 h of electrophoresis at 10 mA permitted resolution of some 30–35 5S gene clusters on fragments ranging in size from 30-2 kb (bottom of gel). The majority of the 5S gene clusters were found in both MIC and MAC genomes, a few being MIC limited and a few MAC limited. The relative copy number of 5S genes in each cluster was determined by integrating densitometric tracings made from autoradiograms. The total number of copies in the MAC was found to be 33% greater than in the MIC. When different inbred strains were examined, the majority of the 5S gene clusters were found to be conserved, with a few strain-specific clusters observed. Nine nullisomic strains missing both copies of one or more MIC chromosomes were used to map the 5S gene clusters. The clusters were distributed non-randomly to four of the five MIC chromosomes, with 17 of them localized to chromosome 1. A deletion map of chromosome 1 was constructed using various deletion strains. Some of these deletion strains included B strain clones which had been in continuous culture for 15 years. Losses of 5S gene clusters in these ageing MIC could be attributed to deletions of particular chromosomes. The chromosomal distribution of the 5S gene clusters in Tetrahymena is unlike that found for the well-studied eukaryotes, Drosophila and Xenopus.  相似文献   

4.
5.
Ribosomal 5S RNA, labelled with 125 I, was annealled to denatured spermatocyte chromosomes of salamanders from 11 different genera of the family Plethodontidae. The salamanders studied have genomes with 1, 2 or 3 gene clusters. Eleven sites are located interstitially on short chromosome arms; 3 are found interstitially on long arms; 5 sites are at centromeric regions and one is telomeric. — Salamanders from five genera of Neotropical plethodontids carry a 5S gene cluster on the short arm of a large asymmetric chromosome, presumably a linkage group that has remained stable since the divergence of these genera in Tertiary time. In Lineatriton lineola this short arm is heterochromatic during pachytene and it shows a high incidence of chiasma failure at the first meiotic metaphase, contrasting with the situation found in two other species. The localization and number of 5S gene sites is consistent with the proposed phylogeny of these Neotropical genera by Wake and Lynch (1976).  相似文献   

6.
The genes coding for the two classes of ribosomal RNA molecules, 5S RNA and 18+28S RNA, have been localized in the Norway rat (Rattus norvegicus). The 18+28S RNA cistrons are found on three chromosomes, at secondary constrictions on the short arms of chromosomes 3 and 12 and at the telomere of the short arm of chromosome 11. These sites were confirmed using the silver staining technique for nucleolar organizer regions. Two sites were found for the 5S RNA genes; one is closely linked to the 18+28S gene site on chromosome 12. The second site is at or near the telomere of the long arm of chromosome 19.  相似文献   

7.
8.
The 5S RNA genes of Schizosaccharomyces pombe.   总被引:10,自引:8,他引:2       下载免费PDF全文
The genomic arrangement and sequences of S. pombe 5S RNA genes are reported here. The 5S gene sequences appear to be dispersed within the genome, and are found independently of other rRNA genes. The sequences of two 5S genes examined show identical coding regions of 119 base pairs but have widely varying flanking sequences. A tRNAAsp gene is found in the 3' flanking region of one of the 5S genes. The tRNAAsp gene is faithfully transcribed in an X. laevis in vitro system, while the 5S genes are not transcribed in this system. The phylogenetic position of S. pombe is examined through comparison of 5S RNA sequences.  相似文献   

9.
Interspersion of histone and 5S RNA genes in Artemia   总被引:4,自引:0,他引:4  
Four recombinant lambda phage containing histone genes were selected from a library of Artemia genomic DNA fragments. The histone gene organization of Artemia resembles that of other invertebrates in that all five genes are clustered and repeated in tandem with approximate repeat lengths of 8.5 kb and 9.3 kb. Each recombinant lambda phage isolate hybridizes with five histone mRNAs and unexpectedly also with 5S ribosomal RNA. Hybridization kinetics have shown the number of histone genes to be about 95-100 copies per haploid genome. An identical number of copies was determined for a hybridization probe containing the 5S gene but no histone genes. We have not found any evidence for a separate set of repeated 5S genes outside this histone + 5S block.  相似文献   

10.
Repetitive genes localized within heterochromatin, such as the rDNA in Drosophila, replicate several steps less than the bulk DNA during polytenization. The 5S RNA genes of Drosophila hydei were chosen as a model system to inquire whether underreplication also occurs if the repetitive gene cluster is localized in the euchromatin. Filter saturation hybridization showed that there are 320 5S RNA gene copies in the haploid genome. Setting the diploid number at 100%, it was found that the DNA of polytene salivary glands reached only 79% of this value, and the DNA of polyploid ovarian tissue reached only 72% of this value. Although the latter two saturation values are less than the diploid standard, they are not as low as the 50% saturation value predicted for a one-step reduction. This may reflect a slower replication of these genes compared to the bulk DNA. These results imply that underreplication is not a general characteristic of repetitive genes but depends on their localization in the euchromatic or heterochromatic part of the genome.  相似文献   

11.
The loops which transcribe 5S ribosomal RNA in lampbrush chromosomes of the newt, Notophthalmus (Triturus) viridescens, were identified by hybridizing purified 5S DNA to nascent 5S RNA in situ. The genes which code for 5S RNA were found near the centromeres of chromosomes 1, 2, 6, and 7 by hybridizing iodinated 5S RNA to denatured lampbrush and mitotic chromosomes in situ. These genes and their intervening spacer DNA were isolated from Xenopus laevis using sequential silver-cesium sulfate equilibrium centrifugations. This purified 5S DNA was iodinated and hybridized to non-denatured lampbrush chromosomes in situ, where it bound to nascent 5S RNA on loops at the base of the centromeres of chromosomes 1, 2, 6, and 7. The number of 5S genes present in the haploid chromosome complement of N. viridescens was determined. — The 5S loops were chosen for study, since (1) the synthesis of 5S RNA has been demonstrated during the lampbrush stage, (2) both 5S RNA and 5S DNA could be isolated in pure form, and (3) the localization of the repetitive 5S genes could be verified by conventional in situ hybridization procedures. These methods may be applicable to the identification of other loops, leading to a better understanding of lampbrush chromosome function.  相似文献   

12.
13.
14.
15.
16.
The genes for 5 S RNA in Chironomus tentans have been located to region 2A of chromosome II by cytological hybridization. RNA from individual chromosomes, nuclear sap and nucleoli of salivary gland cells hybridized with the identified 5 S RNA genes in region 2A of chromosome II. The results suggest a common origin of 5 S RNA in these different nuclear compartments.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号