首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.  相似文献   

2.
The cryptomonads are an enigmatic group of marine and freshwater unicellular algae that acquired their plastids through the engulfment and retention of a eukaryotic ("secondary") endosymbiont. Together with the chlorarachniophyte algae, the cryptomonads are unusual in that they have retained the nucleus of their endosymbiont in a miniaturized form called a nucleomorph. The nucleomorph genome of the cryptomonad Guillardia theta has been completely sequenced and with only three chromosomes and a total size of 551 kb, is a model of nuclear genome compaction. Using this genome as a reference, we have investigated the structure and content of nucleomorph genomes in a wide range of cryptomonad algae. In this study, we have sequenced nine new cryptomonad nucleomorph 18S ribosomal DNA (rDNA) genes and four heat shock protein 90 (hsp90) gene fragments, and using pulsed-field gel electrophoresis and Southern hybridizations, have obtained nucleomorph genome size estimates for nine different species. We also used long-range polymerase chain reaction to obtain nucleomorph genomic fragments from Hanusia phi CCMP325 and Proteomonas sulcata CCMP704 that are syntenic with the subtelomeric region of nucleomorph chromosome I in G. theta. Our results indicate that (1) the presence of three chromosomes is a common feature of the nucleomorph genomes of these organisms, (2) nucleomorph genome size varies dramatically in the cryptomonads examined, (3) unidentified cryptomonad species CCMP1178 has the largest nucleomorph genome identified to date at approximately 845 kb, (4) nucleomorph genome size reductions appear to have occurred multiple times independently during cryptomonad evolution, (5) the relative positions of the 18S rDNA, ubc4, and hsp90 genes are conserved in three different cryptomonad genera, and (6) interchromosomal recombination appears to be rapidly changing the size and sequence of a repetitive subtelomeric region of the nucleomorph genome between the 18S rDNA and ubc4 loci. These results provide a glimpse into the genetic diversity of nucleomorph genomes in cryptomonads and set the stage for more comprehensive sequence-based studies in closely and distantly related taxa.  相似文献   

3.
The relationship between phylogeny and nucleomorph genome size was examined in 16 strains of cryptomonad algae using pulsed‐field gel electrophoresis, Southern hybridization and phylogenetic analyses. Our results suggest that all cryptomonads examined in this study contain three nucleomorph chromosomes and their total genome size ranges from 495 to 750 kb. In addition, we estimated the plastid genome size of the respective organisms. The plastid genomes of photosynthetic strains were approximately 120–160 kb in size, whereas the non‐photosynthetic Cryptomonas paramecium NIES715 possesses a genome of approximately 70 kb. Phylogenetic analysis of the nuclear small subunit ribosomal DNA (SSU rDNA) gene showed that nucleomorph genome size varies considerably within closely related strains. This result indicates that the reduction of nucleomorph genomes is a rapid phenomenon that occurred multiple times independently during cryptomonad evolution. The nucleomorph genome sizes of Cryptomonas rostratiformis NIES277 appeared to be approximately 495 kb. This is smaller than that of Guillardia theta CCMP327, which until now was thought to have the smallest known nucleomorph genome size among photosynthetic cryptomonads.  相似文献   

4.
Nucleomorphs are the vestigial nuclear genomes of eukaryotic algal cells now existing as endosymbionts within a host cell. Molecular investigation of the endosymbiont genomes has allowed important insights into the process of eukaryote/eukaryote cell endosymbiosis and has also disclosed a plethora of interesting genetic phenomena. Although nucleomorph genomes retain classic eukaryotic traits such as linear chromosomes, telomeres, and introns, they are highly reduced and modified. Nucleomorph chromosomes are extremely small and encode compacted genes which are disrupted by the tiniest spliceosomal introns found in any eukaryote. Mechanisms of gene expression within nucleomorphs have apparently accommodated increasingly parsimonious DNA usage by permitting genes to become co-transcribed or, in select cases, to overlap.  相似文献   

5.
Cryptomonads are ubiquitous aquatic unicellular eukaryotes that acquired photosynthesis through the uptake and retention of a red algal endosymbiont. The nuclear genome of the red alga persists in a highly reduced form termed a nucleomorph. The nucleomorph genome of the model cryptomonad Guillardia theta has been completely sequenced and is a mere 551 kilobases (kb) in size, spread over three chromosomes. The presence of three chromosomes appears to be a universal characteristic of nucleomorph genomes in cryptomonad algae as well as in the chlorarachniophytes, an unrelated algal lineage with a nucleomorph and plastid genome derived from a green algal endosymbiont. Another feature of nucleomorph genomes in all cryptomonads and chlorarachniophytes examined thus far is the presence of subtelomeric ribosomal DNA (rDNA) repeats at the ends of each chromosome. Here we describe the first exception to this canonical nucleomorph genome architecture in the cryptomonad Hemiselmis rufescens CCMP644. Using pulsed-field gel electrophoresis (PFGE), we estimate the size of the H. rufescens nucleomorph genome to be approximately 580 kb, slightly larger than the G. theta genome. Unlike the situation in G. theta and all other known cryptomonads, sub-telomeric repeats of the rDNA cistron appear to be absent on both ends of the second largest chromosome in H. rufescens and two other members of this genus. Southern hybridizations using a variety of nucleomorph protein gene probes against PFGE-separated H. rufescens chromosomes indicate that recombination has been a major factor in shaping the karyotype and genomic structure of cryptomonad nucleomorphs.  相似文献   

6.
U G Maier 《Bio Systems》1992,28(1-3):69-73
Cryptomonads are a group of unicellular eukaryotic algae with unusual features. First, their plastids are surrounded by four membranes and second, between the two pairs of membranes there is a plasmatic compartment. This supernumerary eukaryotic compartment of the cryptomonad cell is devoid of mitochondria but contains starch grains, 80S ribosomes and a small vestigial eukaryotic nucleus called the nucleomorph. Isolation and characterization of the four genomes (from mitochondrion, plastid, nucleus and nucleomorph) of one cryptomonad, Pyrenomonas salina, demonstrates that the cryptomonads have originated from an unicellular organism related to green algae which endosymbiotically took up a eukaryotic protist related to the red algae.  相似文献   

7.
Nucleomorph genomes: structure, function, origin and evolution   总被引:4,自引:0,他引:4  
The cryptomonads and chlorarachniophytes are two unicellular algal lineages with complex cellular structures and fascinating evolutionary histories. Both groups acquired their photosynthetic abilities through the assimilation of eukaryotic endosymbionts. As a result, they possess two distinct cytosolic compartments and four genomes--two nuclear genomes, an endosymbiont-derived plastid genome and a mitochondrial genome derived from the host cell. Like mitochondrial and plastid genomes, the genome of the endosymbiont nucleus, or 'nucleomorph', of cryptomonad and chlorarachniophyte cells has been greatly reduced through the combined effects of gene loss and intracellular gene transfer. This article focuses on the structure, function, origin and evolution of cryptomonad and chlorarachniophyte nucleomorph genomes in light of recent comparisons of genome sequence data from both groups. It is now possible to speculate on the reasons that nucleomorphs persist in cryptomonads and chlorarachniophytes but have been lost in all other algae with plastids of secondary endosymbiotic origin.  相似文献   

8.
Cryptomonads are unicellular algae with chloroplasts surrounded by four membranes. Between the inner and the outer pairs of membranes is a narrow plasmatic compartment which contains a nucleus-like organelle called the nucleomorph. Using pulsed field gel electrophoresis it is shown that the nucleomorph of the cryptomonad Pyrenomonas salina contains three linear chromosomes of 195 kb, 225 kb and 240 kb all of which encode rRNAs. Thus, this vestigial nucleus has a haploid genome size of 660 kb, harboring the smallest eukaryotic genome known so far. From the cell nucleus of P. salina at least 20 chromosomes ranging from 230 kb to 3.000 kb were fractionated. Here, the rDNA was detected on a single chromosome of about 2.500 kb.  相似文献   

9.
Gilson PR 《Genome biology》2001,2(8):reviews1022.1-reviews10225
The DNA sequence of one of the smallest eukaryotic genomes has recently been finished - that of the reduced nucleus, or nucleomorph, of an algal endosymbiont that resides within a cryptomonad host cell. Its sequence promises insights into chloroplast acquisition, the constraints on genome size and the basic workings of eukaryotic cells.  相似文献   

10.
11.
Chlorarachnion reptans Geitler shows affinities to both the Chlorophyceae and the chloroplast endoplasmic reticulum-containing chromophyte algae in possessing chlorophyll b and chloroplasts which are limited by four membranes, respectively. In the periplastidal compartment surrounding each of the four to eight chloroplasts of a C. reptans cell are putative eukaryotic-sized ribosomes, scattered tubules and vesicles, and a small double-membrane-limited nucleus-like organelle named the nucleomorph. The nucleomorphs display 4′-6-diamidino-2-phenylindole (DAPI)fluorescence which is sensitive to DNase digestion, but not to treatment with RNase. The nucleomorphs also contain a fibrillogranular body which resembles a nucleolus. Nucleomorph division occurs by the sequential infolding of the inner and outer envelope membranes and subsequent constriction in two, with no involvement of microtubules. In all these characteristics, the nucleomorphs of C. reptans are similar to the cryptomonad nucleomorph which has been hypothesized to be the vestigial nucleus of an ancestral red alga which gave rise to the chloroplasts of the Cryptophyceae. The presence of chlorophyll b and the contents and morphology of C. reptans chloroplast compartments suggest a green algal origin for the chloroplasts of these cells. The discovery of a second organism with a DNA-containing, nucleus-like organelle in its chloroplast compartment lends strong support to the hypothesis that the chloroplasts of many algae have evolved from eukaryotic endosymbionts.  相似文献   

12.
Chlorarachniophytes are enigmatic marine unicellular algae that acquired photosynthesis by secondary endosymbiosis. Chlorarachniophytes are unusual in that the nucleus of the engulfed algal cell (a green alga) persists in a miniaturized form, termed a nucleomorph. The nucleomorph genome of the model chlorarachniophyte, Bigelowiella natans CCMP621, is 373 kilobase pairs (kbp) in size, the smallest nuclear genome characterized to date. The B. natans nucleomorph genome is composed of three chromosomes, each with canonical eukaryotic telomeres and sub-telomeric ribosomal DNA (rDNA) operons transcribed away from the chromosome end. Here we present the complete rDNA operon and telomeric region from the nucleomorph genome of Lotharella oceanica CCMP622, a newly characterized chlorarachniophyte strain with a genome ~610 kbp in size, significantly larger than all other known chlorarachniophytes. We show that the L. oceanica rDNA operon is in the opposite chromosomal orientation to that of B. natans. Furthermore, we determined the rDNA operon orientation of five additional chlorarachniophyte strains, the majority of which possess the same arrangement as L. oceanica, with the exception of Chlorarachnion reptans and those very closely related to B. natans. It is thus possible that the ancestral rDNA operon orientation of the chlorarachniophyte nucleomorph genome might have been the same as in the independently evolved, red algal-derived, nucleomorph genomes of cryptophytes. A U2 small nuclear RNA gene was found adjacent to the telomere in Gymnochlora stellata CCMP2057 and Chlorarachnion sp. CCMP2014. This feature may represent a useful evolutionary character for inferring the relationships among extant lineages.  相似文献   

13.
Cryptophytes are unicellular, biflagellate algae with plastids (chloroplasts) derived from the uptake of a red algal endosymbiont. These organisms are unusual in that the nucleus of the engulfed red alga persists in a highly reduced form called a nucleomorph. Nucleomorph genomes are remarkable in their small size (<1,000 kilobase pairs [kbp]) and high degree of compaction (~1 kbp per gene). Here, we investigated the molecular and karyotypic diversity of nucleomorph genomes in members of the genus Cryptomonas. 18S rDNA genes were amplified, sequenced, and analyzed from C. tetrapyrenoidosa Skuja CCAP979/63, C. erosa Ehrenb. emmend. Hoef‐Emden CCAP979/67, Cryptomonas sp. CCAP979/52, C. lundii Hoef‐Emden et Melkonian CCAP979/69, and C. lucens Skuja CCAP979/35 in the context of a large set of publicly available nucleomorph 18S rDNA sequences. Pulsed‐field gel electrophoresis (PFGE) was used to examine the nucleomorph genome karyotype of each of these strains. Individual chromosomes ranged from ~160 to 280 kbp in size, with total genome sizes estimated to be ~600–655 kbp. Unexpectedly, the nucleomorph karyotype of Cryptomonas sp. CCAP979/52 is significantly different from that of C. tetrapyrenoidosa and C. lucens, despite the fact that their 18S rDNA genes are >99% identical to one another. These results suggest that nucleomorph karyotype similarity is not a reliable indicator of evolutionary affinity and provides a starting point for further investigation of the fine‐scale dynamics of nucleomorph genome evolution within members of the genus Cryptomonas.  相似文献   

14.
Cryptomonads have acquired photosynthesis through secondary endosymbiosis: they have engulfed and retained a photosynthetic eukaryote. The remnants of this autotrophic symbiont are severely reduced, but a small volume of cytoplasm surrounding the plastid persists, along with a residual nucleus (the nucleomorph) that encodes only a few hundred genes. We characterized tubulin genes from the cryptomonad Guillardia theta. Despite the apparent absence of microtubules in the endosymbiont, we recovered genes encoding alpha-, beta-, and gamma-tubulins from the nucleomorph genome of G. theta. The presence of tubulin genes in the nucleomorph indicates that some component of the cytoskeleton is still present in the cryptomonad symbiont despite the fact that very little cytoplasm remains, no mitosis is known in the nucleomorph, and microtubules have never been observed anywhere in the symbiont. Phylogenetic analyses with nucleomorph alpha- and beta-tubulins support the origin of the cryptomonad nucleomorph from a red alga. We also characterized alpha and beta-tubulins from the host nucleus of G. theta and compared these with tubulins we isolated from two flagellates, Goniomonas truncata and Cyanophora paradoxa, previously proposed to be related to the cryptomonad host. Phylogenetic analyses support a relationship between the cryptomonad host and Goniomonas but do not support any relationship between cryptomonads and Cyanophora.  相似文献   

15.

Background

Nucleomorphs are residual nuclei derived from eukaryotic endosymbionts in chlorarachniophyte and cryptophyte algae. The endosymbionts that gave rise to nucleomorphs and plastids in these two algal groups were green and red algae, respectively. Despite their independent origin, the chlorarachniophyte and cryptophyte nucleomorph genomes share similar genomic features such as extreme size reduction and a three-chromosome architecture. This suggests that similar reductive evolutionary forces have acted to shape the nucleomorph genomes in the two groups. Thus far, however, only a single chlorarachniophyte nucleomorph and plastid genome has been sequenced, making broad evolutionary inferences within the chlorarachniophytes and between chlorarachniophytes and cryptophytes difficult. We have sequenced the nucleomorph and plastid genomes of the chlorarachniophyte Lotharella oceanica in order to gain insight into nucleomorph and plastid genome diversity and evolution.

Results

The L. oceanica nucleomorph genome was found to consist of three linear chromosomes totaling ~610 kilobase pairs (kbp), much larger than the 373 kbp nucleomorph genome of the model chlorarachniophyte Bigelowiella natans. The L. oceanica plastid genome is 71 kbp in size, similar to that of B. natans. Unexpectedly long (~35 kbp) sub-telomeric repeat regions were identified in the L. oceanica nucleomorph genome; internal multi-copy regions were also detected. Gene content analyses revealed that nucleomorph house-keeping genes and spliceosomal intron positions are well conserved between the L. oceanica and B. natans nucleomorph genomes. More broadly, gene retention patterns were found to be similar between nucleomorph genomes in chlorarachniophytes and cryptophytes. Chlorarachniophyte plastid genomes showed near identical protein coding gene complements as well as a high level of synteny.

Conclusions

We have provided insight into the process of nucleomorph genome evolution by elucidating the fine-scale dynamics of sub-telomeric repeat regions. Homologous recombination at the chromosome ends appears to be frequent, serving to expand and contract nucleomorph genome size. The main factor influencing nucleomorph genome size variation between different chlorarachniophyte species appears to be expansion-contraction of these telomere-associated repeats rather than changes in the number of unique protein coding genes. The dynamic nature of chlorarachniophyte nucleomorph genomes lies in stark contrast to their plastid genomes, which appear to be highly stable in terms of gene content and synteny.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-374) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Chlorarachniophytes are flagellated and/or reticulopod-forming marine algae with chlorophyll a- and b-containing plastids of secondary endosymbiotic origin. They are one of only two algal groups known to possess a "nucleomorph" (i.e. the remnant nucleus of the eukaryotic endosymbiont that donated the plastid). Apart from the recently sequenced nucleomorph genome of Bigelowiella natans, little is known about the size, structure, and composition of chlorarachniophyte nucleomorph genomes. Toward the goal of better understanding nucleomorph genome diversity, as well as establishing a phylogenetic framework with which to interpret variation in chlorarachniophyte morphology, ultrastructure, and life cycle, we are studying a wide range of chlorarachniophyte strains from public culture collections and natural habitats. We have obtained 22 new chlorarachniophyte nuclear and nucleomorph 18S rRNA gene (18S rDNA) sequences and nucleomorph genome size estimates for 14 different strains. Consistent with previous studies, all of the chlorarachniophytes examined appear to possess three nucleomorph chromosomes. However, our results suggest considerable variation in nucleomorph genome size and structure, with individual chromosome sizes ranging from approximately 90 to approximately 210 kbp, and total genome sizes between approximately 330 kbp in Lotharella amoebiformis and approximately 610 kbp in unidentified chlorarachniophyte strain CCMP622. The significance of these phylogenetic and nucleomorph karyotype data is discussed.  相似文献   

18.
ABSTRACT. Analysis of total DNA isolated from the Chrysophyte alga Ochromonas danica revealed, in addition to nuclear DNA, two genomes present as numerous copies per cell. The larger genome (?120 kilobase pairs or kbp) is the plastid DNA, which is identified by its hybridization to plasmids containing sequences for the photosynthesis genes rbcL, psbA, and psbC. The smaller genome (40 kbp) is the mitochondrial genome as identified by its hybridization with plasmids containing gene sequences of plant cytochrome oxidase subunits I and II. Both the 120- and 40-kbp genomes contain genes for the small and large subunits of rDNA. The mitochondrial genome is linear with terminal inverted repeats of about 1.6 kbp. Two other morphologically similar species were examined, Ochromonas minuta and Poteriochromonas malhamensis. All three species have linear mitochondrial DNA of 40 kbp. Comparisons of endonuclease restriction-fragment patterns of the mitochondrial and chloroplast DNAs as well as those of their nuclear rDNA repeats failed to reveal any fragment shared by any two of the species. Likewise, no common fragment size was detected by hybridization with plasmids containing heterologous DNA or with total mitochondrial DNA of O. danica; these observations support the taxonomic assignment of these three organisms to different species. The Ochromonas mitochondrial genomes are the first identified in the chlorophyll a/c group of algae. Combining these results with electron microscopic observations of putative mitochondrial genomes reported for other chromophytes and published molecular studies of other algal groups suggests that all classes of eukaryote algae may have mitochondrial genomes < 100 kbp in size, more like other protistans than land plants.  相似文献   

19.
Cryptomonads are unicellular flagellates whose plastids are surrounded by four membranes. A periplastidal compartment, containing eukaryote-type ribosomes, starch grains and a so-called nucleomorph, is located between the inner and outer membrane pairs. The nucleomorph has been shown to be the vestigial nucleus of a eukaryotic endosymbiont. In order to obtain more information about the chromatin structure of the nucleomorph and the host nuclear chromosomes, we studied the distribution of the histone, H4. H4 was not detectable in the nucleomorph by immunolocalization, thus supporting earlier findings by Gibbs [In: Wiesner et al. (Eds.), Experimental Phycology 1, 1990, pp. 145–157]. Likewise, no H4 DNA was demonstrable in the nucleomorph by Southern hybridization. Sequence analysis, and Southern and Northern blot data of a cryptomonad gene, H4, indicate an intermediate position for these genes between animals and plants.  相似文献   

20.
Summary The nucleomorph is a unique self-replicating organelle which is invariably present in the periplastidal compartment of cryptomonads. The nucleomorph ofCryptomonas abbreviata is located in a groove on the inner face of the pyrenoid. When JB-4-embedded sections ofC. abbreviata are stained with 4-6-diamidino-2-phenylindole (DAPI), the nucleomorph exhibits a blue fluorescence characteristic of DNA-DAPI complexes. This fluorescence is removed by DNase digestion, but not by RNase. When cells are prepared for electron microscopy by the method of Ryter and Kellenberger (Schreil 1964), a network of fine DNA-like fibrils is observed in the nucleomorph matrix. It is estimated that the nucleomorph contains between 108 and 109 daltons of DNA. The presence of DNA in nucleomorphs strongly supports the hypothesis that the nucleomorph is the vestigial nucleus of a eukaryotic endosymbiont. It is postulated that this eukaryotic symbiont was an ancestral red alga or an organism closely related to red algae. The cryptomonad host cell, on the other hand, is not evolutionarily close to any other group of algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号