首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.  The effects of the biogenic amines serotonin and octopamine on motion-sensitive neurons in the lobula of the honey bee were analysed electrophysiologically. Single cell activity was recorded intracellularly during application of amines. Field potentials in the lobula were recorded to measure the effects on populations of motion-sensitive neurons.
2.  Serotonin and octopamine modulate the response properties of motion-sensitive neurons in the lobula in a functionally antagonistic way.
3.  The application of serotonin, in most cases, reduces background activity as well as responses to moving stripe patterns by motion-sensitive lobula neurons. The direction specificity can also decrease after serotonin application. In accordance with the single cell recordings, the amplitudes of lobula field potentials evoked by moving stripe patterns are also reduced by application of serotonin.
4.  Octopamine leads to an increase in the amplitude and the initial slope of field potentials evoked by moving stripe patterns. However, there were no uniform effects at the single cell level after octopamine application.
5.  The modulatory effects of serotonin and octopamine on motion-sensitive neurons correlate well with some behavioral modifications elicited by these substances (Erber et al. 1991; Erber and Kloppenburg, companion paper).
  相似文献   

2.
1.  The larva of the tiger beetle (Cicindela chinensis) possesses six stemmata on either side of the head. Optical and physiological properties of two pairs of large stemmata and a pair of anterior medium sized stemmata, and responses of second-order visual interneurons (medulla neurons) have been examined.
2.  Objects at infinite distance were estimated to focus 50 m deep in the retina in the large stemmata. Receptive fields of four large stemmata, the acceptance angle of each being 90°, largely overlapped one another.
3.  The stemmata possessed a single type of retinular cell with a maximal spectral sensitivity at 525 nm, and a flicker fusion frequency of 25–50 Hz.
4.  Medulla neurons expanded fan-shaped dendrites in the medulla neuropil, and their axons extended into the protocerebrum. They responded to illumination with a variety of discharge patterns. They also responded with spike discharges to moving objects and to apparent movements provided by sequential illumination or extinction of LEDs. They did not show directional selectivity. They possessed well-defined receptive fields ranging from 30° to 105°.
  相似文献   

3.
This paper describes the morphology and response characteristics of two types of paired descending neurons (DNs) (classified as DNVII1 and DNIV1) and two lobula neurons (HR1 and HP1) in the honeybee, Apis mellifera.
1.  The terminal arborizations of the lobula neurons are in juxtaposition with the dendritic branches of the DNs (Figs. 2, 3b, 5). Both of the DNs descend into the ipsilateral side of the thoracic ganglia via the dorsal intermediate tract (Fig. 6) and send out many blebbed terminal branches into the surrounding motor neuropil (Figs. 3c, 7).
2.  Both the lobula and descending neurons respond in a directionally selective manner to the motion of widefield, periodic square-wave gratings.
3.  The neurons have broad directional tuning curves (Figs. 10, 11). HR1 is maximally sensitive to regressive (back-to-front) motion and HP1 is maximally sensitive to progressive (front-to-back) motion over the ipsilateral eye (Fig. 11). DNVII1 is maximally sensitive when there is simultaneous regressive motion over the ipsilateral eye and progressive motion over the contralateral eye (Fig. 12a). Conversely, DNIV1 is optimally stimulated when there is simultaneous progressive motion over the ipsilateral eye and regressive motion over the contralateral eye (Fig. 12b).
4.  The response of DNIV1 is shown to depend on the contrast frequency (CF) rather than the angular velocity of the periodic gratings used as stimuli. The peak responses of both regressive and progressive sensitive DNs are shown to occur at CFs of 8–10 Hz (Figs. 13, 14).
  相似文献   

4.
1.  Auditory stimuli consisting of tape-recorded natural sounds were used in a study of 129 neurons in Field L of the caudal neostriatum in the forebrain of curarized starlings (Sturnus vulgaris).
2.  An extensive program of stimuli comprising many different signals (109 sound elements) was devised in order to permit identification of even very highly specialized neurons.
3.  As a rule, the time courses of the neuronal responses parallel those of certain parameters or parameter combinations of the sound stimuli. The responses of a few very specialized neurons, however, did not reflect any distinguishable temporal substructure within the effective sounds.
4.  64 neuons were examined with respect to the number of stimuli, out of a sample of 80 sound elements, eliciting a response. 24 of these neurons responded to less than 10 of the 80 natural sounds. These include neurons responding only to a single sound or to sounds of a single type.
5.  30 of the 64 neurons responded most strongly, or exclusively, to sounds of a single type.
6.  The criterion determining whether a neuron responds to a given sound may be a single parameter, a combination of parameters, or the entire complex of parameters describing the sound.
  相似文献   

5.
Evidence is presented here from experiments on the visual system of the fly that questions participation of the large monopolar cells (LMCs) in the optomotor response.
1.  The response of a directionally-selective motion-detecting neuron (H1) in the lobula plate to small sudden jumps of a grating is directionally-selective (Fig. 1), indicating that at least one of the inputs to each of the elementary movement detectors (EMD) that feed into H1 must deliver a tonic signal. The responses of LMCs to the same stimulus are, however, entirely phasic (Fig. 2).
2.  In dual electrode experiments on Eristalis, injection of current into an LMC does not change the spiking rate of H1. Induction of spiking activity, or injection of current into an LMC, which alters the cell's response to a flash of light from a point source, does not affect the response of H1 to the same flash (Figs. 3, 4).
3.  The temporal properties of LMCs differ markedly from those of the optomotor response and of directionally-selective movement — detecting neurons in the lobula plate (Figs. 6, 9).
4.  There is poor correlation between LMC degeneration and the strength of the optomotor response in a mutant of Drosophila (Fig. 8).
5.  The optomotor response of Drosophila is strongly polarization sensitive, but Drosophila LMCs show no polarization sensitivity (Fig. 11).
While our results do not exclude the participation of the LMCs in the optomotor response, they do indicate that at least one other lamina channel that is tonic and/ or polarization sensitive must be involved.  相似文献   

6.
1.  The neural mechanisms responsible for flashing in the firefly,L. lusitanica, were investigated by means of localized electrolytic lesions and electrical stimulations.
2.  Restricted lesions of the median protocerebral neuropile produced the irreversible abolition of spontaneous flashing and of the associated photogenic volleys. Single electric shocks applied to the same structure were followed by a propagated action potential in the lanternal nerves; a short (40 ms) train of stimuli at 200/s evoked a fully developed photogenic volley and the related flash, both of which were identical in all respects to the spontaneous ones (Figs. 2, 3).
3.  Separation of the protocerebrum from the optic lobes led to the disappearence of rhythmic flashing, which was replaced by a continuous, dull luminescence; at the same time the photogenic volleys of the lanternal nerves were replaced by a continuous, asynchronous discharge at low frequency (Fig. 15).
4.  Ablation of theretina-lamina ganglionaris complex was followed by a marked increase of flashing frequency. Electrical stimulation of theretina at low repetition rate (5/s) was followed by depression of both frequency and intensity of spontaneous flashing; opposite effects (i.e. increase in flashing frequency and intensity) were obtained by high rate (30/s) retinal stimulation (Figs. 6–9).
5.  Electrolytic lesions of the medulla performed after ablation of theretina-lamina complex, did not produce any change in the patterns of spontaneous flashing. Electrical stimulation of the medulla produced facilitatory effects on flashing at all repetition rates used, with the lowest threshold at 30/s. This effect disappeared after localized electrolytic lesion (Figs. 12–14).
6.  These findings are discussed and it is concluded that (a) the photomotor neurons of the firefly's brain are located in the deep protocerebral neuropile; (b) their rhythmic activity is the result of the interaction with an oscillator located in the optic lobes, possibly in the lobula; (c) the retina-lamina complex exerts a tonic inhibitory influence on flashing; (d) a phasic facilitatory influence is exerted by neural structures located at the level of the medulla.
  相似文献   

7.
1.  The actions of GABA on three classes of visual interneurons in crayfish, Procambarus clarkii, medulla externa are examined. The effect of GABA on the visual response is compared to GABA's action on agonist-elicited responses purported to mediate the visual response.
2.  GABA produces a shunting type of inhibition in medullary amacrine cells which is associated with a small depolarization (Figs. 2, 3), a large increase in input conductance (Gn) and a reversal potential close to rest (Fig. 4). GABA is a potent antagonist to the depolarizing action of acetylcholine (ACh) (Fig. 5).
3.  GABA depolarizes dimming fibers (Fig. 2), and the response is mediated by an increase in Gn (Fig. 6). GABA antagonizes the light-elicited IPSP and the hyperpolarizing action of ACh (Fig. 7).
4.  Sustaining fibers (SF) do not appear to have GABA receptors but GABA inhibits the excitatory visual input pathway to the SFs (Fig. 8). Conversely, the GABA antagonist, bicuculline, potentiates the SF light response (Fig. 9).
5.  GABA has at least three different modes of antagonist action in the medulla: i) Increased conductance and depolarization in dimming fibers and medullary amacrine neurons; ii) Decreased chloride conductance in tangential cells; and iii) An inhibitory action on the visual pathway which drives SFs.
  相似文献   

8.
1.  The physiology and morphology of olfactory interneurons in the brain of larval Manduca sexta were studied using intracellular recording and staining techniques. Antennal olfactory receptors were stimulated with volatile substances from plants and with pure odorants. Neurons responding to the stimuli were investigated further to reveal their response specificities, dose-response characteristics, and morphology.
2.  We found no evidence of specific labeled-lines among the odor-responsive interneurons, as none responded exclusively to one plant odor or pure odorant; most olfactory interneurons were broadly tuned in their response spectra. This finding is consistent with an across-fiber pattern of odor coding.
3.  Mechanosensory and olfactory information are integrated at early stages of central processing, appearing in the responses of some local interneurons restricted to the primary olfactory nucleus in the brain, the larval antennal center (LAC).
4.  The responses of LAC projection neurons and higher-order protocerebral interneurons to a given odor were more consistent than the responses of LAC local interneurons.
5.  The LAC appears to be functionally subdivided, as both local and projection neurons had arborizations in specific parts of the LAC, but none had dendrites throughout the LAC.
6.  The mushroom bodies and the lateral protocerebrum contain neurons that respond to olfactory stimulation.
  相似文献   

9.
In response female pheromone the male gypsy moth flies a zigzagging path upwind to locate the source of odor. He determines wind direction visually. To learn more about the mechanism underlying this behavior, we studied descending interneurons with dye-filled micro-electrodes. We studied the interneuronal responses to combinations of pheromone and visual stimuli.
1.  We recorded 5 neurons whose directionally selective visual responses to wide field pattern movement were amplified by pheromone (Figs. 2–6).
2.  The activity of the above neurons was more closely correlated with the position of the moving pattern than with its velocity (Fig. 4).
3.  One neuron showed no clearly directional visual response and no response to pheromone. Yet in the presence of pheromone it showed directionally selective visual responses (Fig. 6).
4.  We recorded 4 neurons whose directionally selective visual responses were not modulated by pheromone (Fig. 7), ruling out the possibility that the effect of the pheromone was simply to raise the activity of all visual neurons.
5.  Our results suggest that female pheromone amplifies some neural pathways mediating male optomotor responses, especially the directionally selective responses to the transverse movement of the image, both below and above the animal.
  相似文献   

10.
1.  Most Purkinje neurons show ongoing spike activity. In approximately 75%, this activity disappeared after peduncle lesion and in some of these the activity stopped when water flow over the gills was interrupted. Approximately one-fourth of Purkinje cells (PC's) showed continuing ongoing activity after afferent input was abolished.
2.  Stimulation of spinal cord elicited both simple spikes, mainly in ipsilateral PC's, and some complex responses (via climbing fibers) usually contralateral and of longer latency than the simple spikes.
3.  Tactile stimulation of skin and flexion of tail or fins, also lateral line stimulation by a water stream, evoked bursts of spikes in PC-s. Input was by mossy fibers and mechanoreceptive fields were large.
4.  Stimulation of vestibular nerve produced both simple and complex responses in PC's. Auditory stimuli were most effective at 800–1200 Hz in eliciting responses via mossy fibers. Responses to sound were phasic changes in ongoing frequency, bursts followed by inhibition or on-off excitation.
5.  Responses to visual stimuli were recorded in granule cells and Purkinje cells, also in mossy axons. Many PC's showed excitatory-inhibitory sequences; a few climbing fiber responses were recorded. The mossy fiber visual input is from optic tectum relay.
6.  Some PC's were activated by two or three sensory modalities.
  相似文献   

11.
1.  Monopolar cells of the first visual ganglion, the lamina, of the bee were recorded from and stained intracellularly.
2.  Several different response types to pulses of spectral light were found. The most common response type hyperpolarized in a phasic-tonic fashion. The tonic hyperpolarizing response frequently decreased gradually, but in some cases increased with lasting illumination. Some cells also gave a transient response to light-OFF. In contrast, one stained and several unstained cells showed depolarizing responses. Five cells exhibited spiking responses under normal physiological conditions.
3.  The V/log I-functions were steeper than those of the photoreceptors and, in some cases, had both rising and falling parts with increasing intensities. The spectral sensitivity obtained with the constant response method showed a peak in the green (510–535 nm) in most cells. A series of spectral flashes revealed an additional type with highest sensitivity in UV. Indirect evidence was found in one cell for spectral opponent processing.
4.  Two morphological types of monopolar cells were stained. These correspond well to Ribi's (1976) L1 and L2 cells, with some differences in detail. The most frequently stained cell type closely resembles his L2 type. All 3 stained spiking cells were of this type.
  相似文献   

12.
1.  An extracellular recording and staining technique has been used to study the structure of individual ventral-cord elements in the auditory pathway ofLocusta migratoria.
2.  Three groups of auditory ventral-cord neurons can be distinguished: (a) neurons ascending to the supraesophageal ganglion, (b) T-shaped neurons, and (c) neurons limited to the thoracic ventral cord.
3.  The ventral-cord neurons ascending to the supraesophageal ganglion link the auditory centers of the thorax to those of the supraesophageal ganglion. These are, at least in part, richly arborized neurons of large diameter.
4.  The ventral-cord neurons with T structure send equivalent signals along both arms of the T; they resemble the neurons of the first group in that they make synaptic connections in the supraesophageal ganglion, but they also conduct auditory information to caudal regions of the thorax via the descending trunk of the axon.
5.  In the supraesophageal ganglion there are several extensive projection areas of the auditory ventral-cord neurons. No direct connections to the mushroom bodies, the central body or the protocerebral bridge could be demonstrated.
6.  The thoracic ventral-cord neurons act as short segmental interneurons, providing a connection between the tympanal receptor fibers and the ascending and T-shaped ventral-cord neurons. They play a crucial role in auditory information processing.
7.  The possible functional properties of the various morphological sections of the auditory ventral-cord neurons are discussed, with reference to their connections with motor and other neuronal systems.
  相似文献   

13.
Efferent fibers from a central circadian clock innervate both photoreceptor cells and second-order neurons (eccentric cells) in the lateral compound eye ofLimulus, and release octopamine when activated. We have used intracellular microelectrodes to study the modulation of eccentric cell function by efferent optic-nerve activity, octopamine agonists, and a K+-channel blocker, TEA.
1.  The dramatic increase in response to light observed in the eccentric cell during efferent activity originates in the photoreceptor cell; efferent activity causes only small changes in the encoding of photoreceptor responses as nerve impulses by the eccentric cell. In contrast, octopamine agonists and TEA produce large changes in the impulse encoder of the eccentric cell.
2.  When lateral eyes are maintained in the dark, the rate of spontaneous impulse firing of eccentric cells increases in the presence of octopamine agonists, while spontaneous bump activity decreases. In contrast, endogenous efferent activity decreases both impulse rate and bump activity in the dark.
3.  TEA reduces the effects of lateral inhibition between neighboring eccentric cells.
4.  We suggest that the mechanisms for lateral inhibition and impulse generation are mediated by K+-channels that can be modulated by octopamine agonists. The distribution of efferent nerve terminals on the eccentric cells is such, however, that efferent optic-nerve activity can alter lateral inhibition, but is unlikely to produce large changes in the impulse encoder.
  相似文献   

14.
1.  Spectral-sensitivity functions of large-field movement-detecting units in the lobula plate of the dronefly Eristalis tenax L., which is a Batesian mimic of the honeybee, were measured using visual stimuli consisting of light flashes, or moving gratings. Two classes of units were studied, one class responding to inward horizontal motion in the contralateral eye (presumably the homologue of the well-known HI in other fly species), and the other class responding to vertically-down-ward motion in the contralateral eye.
2.  In both classes of units, the spectral-sensitivity function of the response to flashes is characterized by two peaks, one in the UV at ca. 350 nm and the other in the blue at ca. 475 nm (Figs. 3, 8). It resembles the spectral-sensitivity function of the R1-R6 class of receptors in other flies.
3.  In both classes of units, the spectral-sensitivity function of the response to movement is characterized by a single peak, occurring in the blue at ca. 450 nm (Figs. 7, 9).
4.  Control experiments on homologous units in the Australian Sheep Blowfly Lucilia cuprina, using identical stimulating conditions reveal that the response to flashes as well as movement possesses a dual-peaked spectral sensitivity, with one peak in the UV and the other in the blue-green region of the spectrum (Figs. 10–12).
5.  The results indicate that the pathways subserving the inputs to movement-detecting neurons in Eristalis are driven by more than one spectral class of photoreceptors. They also reveal that the spectral sensitivity of movement detection in Eristalis bears a closer resemblance to that of the honeybee, than to that of other flies. This similarity to the honeybee may arise from the fact that the dronefly and the honeybee occupy similar ecological niches, both foraging for nectar in flowers.
  相似文献   

15.
1.  Studies were performed to determine the changes in immunoreactive (IR) type II glucocorticoid receptors of the ventral horn of the spinal cord produced by adrenalectomy (ADX), dexamethasone (DEX) treatment, and spinal cord transection in rats.
2.  These treatments did not significantly affect the number of IR neurons of the ventral horn; however, staining intensity was enhanced after ADX and decreased following 4 days of DEX. A similar response pattern was observed for glial-type cells.
3.  In control rats, about half of the ventral horn motoneurons were surrounded by immunoreactive glial perineuroral cells. These perineuronal cells increased after ADX (77% of counted neurons) and decreased following DEX treatment (32%;P < 0.05).=">
4.  Two days after transection, staining was intensified in ventral horn motoneurons and glial cells located in the spinal cord below the lesion. Immunoreactive perineuronal cells increased to 85% of counted neurons, from a value of 66% in sham-operated rats (P < 0.05).=">
5.  These findings suggest considerable plasticity of the spinal cord GCR in response to changes in hormonal levels and experimental lesions. It is possible that factors involved in cell to cell communication with transfer of hypothetical regulatory molecules may play roles in GCR regulation and the increased immunoreaction of glia associated with neurons following transection and ADX.
  相似文献   

16.
1.  Muscles of the posterior cardiac plate (pcp) and pyloric regions in the stomach of Squilla are innervated by motoneurons located in the stomatogastric ganglion (STG). The pattern of innervation of various muscles in these regions was determined using electrophysiological methods.
2.  The dilator muscles are singly or doubly innervated by the pyloric dilator neurons (PDs). The constrictor muscles are singly or doubly innervated by the pcp neuron (PCP) or the pyloric neurons (PYs). These muscles are sequentially activated by pcp-pyloric motor outputs produced by the PCP, PY, and PD. All muscles can generate an all-or-nothing spike.
3.  The constrictor muscles generate spikes followed by depolarizing afterpotentials which lead to a sustained depolarization with repetitive spikes. The PYs can entrain rhythmic spike discharges of these muscles.
4.  The spike of muscles remains unchanged by bath application of tetrodotoxin (10-7 M) to suppress neuronal impulse activities, but it is blocked by Mn2+ (10 mM).
5.  The constrictor muscle isolated from the STG displays an endogenous property of spontaneous membrane oscillation that produces a train of spikes. Brief depolarizing or hyperpolarizing stimuli can trigger or terminate an oscillatory potential, respectively, and reset the subsequent rhythm.
6.  The possible functions of myogenicity under the control of discharges of motoneurons in the pyloric constrictor neuromuscular system are discussed.
  相似文献   

17.
1.  The effect of transient forebrain ischemia on endothelin-1 (ET-1) and endothelin-3 (ET-3) production in the hippocampus of stroke-prone spontaneously hypertensive rats (SHRSPs) was investigated using immunohistochemical techniques.
2.  In SHRSPs subjected to 10-min bilateral carotid occlusion, neuronal degeneration in the CA1 pyramidal cell layer of the hippocampus was detectable at 4 days and remarkable at 7 days after reperfusion.
3.  Coinciding with neuronal degeneration, ET-1- and ET-3-like immunoreactivities were intense in the CA1 pyramidal-cell layer, the stratum lacunosum moleculare, and the CA4 subfield of the hippocampus. Almost all of the immunostained cells had morphological characteristics of astrocytes.
4.  The possibility that ET has a role in the development of neuronal cell death following transient forebrain ischemia warrants further attention.
  相似文献   

18.
19.
1.  The self-adapting effects of chemical backgrounds on the response of primary chemoreceptor cells to superimposed stimuli were studied using lobster (Homarus americanus) NH4 receptor cells.
2.  These receptors responded for several seconds to the onset of the backgrounds, and then returned to their initial level of spontaneous activity (usually zero). The strongest response always occurred only during the steepest concentration change; the response then decayed back to zero or to the earlier spontaneous firing level, while the background concentration was still rising, and remained silent during the entire time that the background was maintained constant (20–30 min) (Fig. 2).
3.  Exposure to constant self-adapting backgrounds eliminated the responses of NH4 receptor cells to stimuli of concentration lower than the background, and reduced the responses to all higher stimulus concentrations tested by a nearly equal amount. This resulted in a parallel shift of the stimulus-response function to the right along the abscissa (Figs. 3 and 4).
4.  Since the response threshold was completely re-set by adaptation to backgrounds, NH4 receptors seem to function mostly as detectors of relative rather than absolute stimulus intensity across their entire dynamic range: the response to a given stimulus-to-background ratio remained the same over 3 log step increases of background concentration (Fig. 6).
5.  As in other sensory modalities, a parallel shift of response functions appears to be an important property of chemoreceptor cells, allowing for this sensory system to function over a wider stimulus intensity range than the instantaneous dynamic range of individual receptor cells.
  相似文献   

20.
1.  Non-visual sensory systems are likely to be important in antarctic fish since these fish inhabit an area where low light levels occur for long periods. This study was undertaken to examine the suitability of the lateral line system for prey detection.
2.  Recordings were made from afferent fibres of the anterior lateral line in the antarctic fishPagothenia borchgrevinki.
3.  A vibrating probe was used to stimulate the lateral line at a range of frequencies between 10 and 100 Hz.
4.  Most units responded best at a stimulus frequency of 40 Hz. Below the best frequency the response typically declined steeply and at higher frequencies it was usually better sustained.
5.  Crustacea identified as major components of the diet ofPagothenia borchgrevinki were individually attached to a force transducer to determine the vibrations produced by swimming movements.
6.  The Fourier amplitude spectra of swimming crustaceans exhibited prominent low frequency peaks at 3–6 Hz and higher frequency peaks in the 30–40 Hz range.
7.  It is concluded that the overlap in the frequency response characteristics of the anterior lateral line and the frequencies produced by crustacean prey clearly establishes the suitability of the lateral line for prey detection.
8.  In several instances recordings were made from fish primary afferent neurons responding to a swimming amphipod. These recordings confirm that crustacean swimming is indeed a potent natural stimulus of the lateral line system.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号