共查询到20条相似文献,搜索用时 9 毫秒
1.
M. R. Ibbotson T. Maddess R. DuBois 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,169(3):355-367
Summary The response properties and gross morphologies of neurons that connect the medulla and midbrain in the butterfly Papilio aegeus are described. The neurons presented give direction-selective responses, i.e. they are excited by motion in the preferred direction and the background activity of the cells is inhibited by motion in the opposite, null, direction. The neurons are either maximally sensitive to horizontal motion or to slightly off-axis vertical upward or vertical downward motion, when tested in the frontal visual field. The responses of the cells are dependent on the contrast frequency of the stimulus with peak values at 5–10 Hz. The receptive fields of the medulla neurons are large and are most sensitive in the frontal visual field. Examination of the local and global properties of the receptive fields of the medulla neurons indicates that (1) they are fed by local elementary motion-detectors consistent with the correlation model and (2) there is a non-linear spatial integration mechanism in operation. 相似文献
2.
Michael R. Ibbotson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,168(1):91-102
This paper describes the morphology and response characteristics of two types of paired descending neurons (DNs) (classified as DNVII1 and DNIV1) and two lobula neurons (HR1 and HP1) in the honeybee, Apis mellifera.
相似文献
1. | The terminal arborizations of the lobula neurons are in juxtaposition with the dendritic branches of the DNs (Figs. 2, 3b, 5). Both of the DNs descend into the ipsilateral side of the thoracic ganglia via the dorsal intermediate tract (Fig. 6) and send out many blebbed terminal branches into the surrounding motor neuropil (Figs. 3c, 7). |
2. | Both the lobula and descending neurons respond in a directionally selective manner to the motion of widefield, periodic square-wave gratings. |
3. | The neurons have broad directional tuning curves (Figs. 10, 11). HR1 is maximally sensitive to regressive (back-to-front) motion and HP1 is maximally sensitive to progressive (front-to-back) motion over the ipsilateral eye (Fig. 11). DNVII1 is maximally sensitive when there is simultaneous regressive motion over the ipsilateral eye and progressive motion over the contralateral eye (Fig. 12a). Conversely, DNIV1 is optimally stimulated when there is simultaneous progressive motion over the ipsilateral eye and regressive motion over the contralateral eye (Fig. 12b). |
4. | The response of DNIV1 is shown to depend on the contrast frequency (CF) rather than the angular velocity of the periodic gratings used as stimuli. The peak responses of both regressive and progressive sensitive DNs are shown to occur at CFs of 8–10 Hz (Figs. 13, 14). |
3.
A fly or bee's responses to widefield image motion depend on two basic parameters: temporal frequency and angular speed. Rotational optic flow is monitored using temporal frequency analysers, whereas translational optic flow seems to be monitored in terms of angular speed. Here we present a possible model of an angular speed detector which processes input signals through two parallel channels. The output of the detector is taken as the ratio of the two channels’ outputs. This operation amplifies angular speed sensitivity and depresses temporal frequency tuning. We analyse the behaviour of two versions of this model with different filtering properties in response to a variety of input signals. We then embody the detector in a simulated agent's visual system and explore its behaviour in experiments on speed control and odometry. The latter leads us to suggest a new algorithm for optic flow driven odometry. 相似文献
4.
Alice Ciencialová Tereza Neubauerová Miloslav Sanda Radek Sindelka Josef Cvacka Zdenek Voburka Milos Budesínsky Václav Kasicka Petra Sázelová Veronika Solínová Martina Macková Bohumír Koutek Jirí Jirácek 《Journal of peptide science》2008,14(6):670-682
We chose the larvae of fleshfly Sarcophaga bullata to map the peptide and protein immune response. The hemolymph of the third-instar larvae of S. bullata was used for isolation. The larvae were injected with bacterial suspension to induce an antimicrobial response. The hemolymph was separated into crude fractions, which were subdivided by RP-HPLC, gel electrophoresis, and free-flow electrophoresis. In several fractions, we determined significant antimicrobial activities against the pathogenic bacteria Escherichia coli, Staphylococcus aureus, or Pseudomonas aeruginosa. Among antimicrobially active compounds we identified dipeptide beta-alanyl-L-tyrosine, protein transferrin, and two variants of peptide sapecin. We also partially characterized two novel antimicrobially active polypeptides; odorant-binding protein 99b, and a peptide which remains unidentified. 相似文献
5.
W. W. Schwippert T. W. Beneke J. P. Ewert 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,167(4):509-520
Summary Intracellular recording and labeling of cells from the toad's (Bufo bufo spinosus) medulla oblongata in response to moving visual (and tactual) stimuli yield the following results. (i) Various response types characterized by extracellular recording in medullary neurons were also identified intracellularly and thus assigned to properties of medullary cell somata. (ii) Focussing on monocular small-field and cyclic bursting properties, somata of such neurons were recorded most frequently in the medial reticular formation and in the branchiomotor column but less often in the lateral reticular formation. (iii) Visual object disrimination established in pretectal/tectal networks is increased in its acuity in 4 types of medullary small-field neurons. The excitatory and inhibitory inputs to these neurons evoked by moving visual objects suggest special convergence likely to increase the filter properties. (iv) Releasing conditions, temporal pattern, and refractoriness of cyclic bursting neurons resemble membrane characteristics of vertebrate and invertebrate neurons known to play a role in premotor/motor activity. (v) Integrating functions of medullary cells have an anatomical correlate in the extensive arborizations of their dendritic trees; 5 morphological types of medullary neurons have been distinguished.Abbreviations
A
stripe moving in antiworm configuration
- (W)
moving in worm configuration
-
S
square
-
BMC
branchiomotor column
-
EPSP
excitatory postsynaptic potential
-
IPSP
inhibitory postsynaptic potential
-
RetF
medullary reticular formation
-
RF
receptive field
-
M neurons
response properties of medullary neurons
-
T neurons
classes of tectal neurons
-
TH neurons
classes of thalamic/pretectal neurons
-
tr.tb.d.
tractus tecto-bulbaris directus
-
tr.tbs.c.
tractus tecto-bulbaris et spinalis cruciatus 相似文献
6.
Summary The rhythmic constriction of the heart tubes in the leech Hirudo medicinalis is controlled by an identified set of motor neurons (HE cells) and interneurons (HN cells) (reviewed by Calabrese and Peterson 1983). Electrophysiological recordings have indicated particular synaptic relationships among HE and HN cells. In the present study, the synaptic framework mediating the interactions among HE cells and HN cells was examined anatomically. Using light and electron microscopy of physiologically identified, HRP-injected cells, we have examined the zones of interaction and types of contacts between specific cells. HE cells, which have very fine, threadlike processes, interact with their contralateral homologues throughout most of the middle third of the ganglionic neuropil. When HE-cell neuntes come together, the apposed plasma membranes are rigidly parallel, separated by an intercellular gap of 6 nm, for up to 6 m. These specializations must form the structural basis for the strong electrical coupling observed (Peterson 1983) between HE-cell pairs. HE cells also emit from the main neurite a series of extremely fine processes that extend dorsally. These appear in the light microscope to contact processes of the ipsilateral HN cell of the same ganglion, and are also in a position to make contact with the axons of more anterior HN cells. The intraganglionic processes of HN cells, which are studded with large varicosities, ramify in part of the region of neuropil occupied by HE-cell processes, as well as more posteriorly. Contacts between HE and HN cells, which are known to be mostly inhibitory synaptic contacts, are seen in the electron microscope to be formed between medium-diameter HN processes, which are filled with clear round synaptic vesicles, and multiple fine tendrils of the HE cell that surround the HN process. Certain HN cells form reciprocal inhibitory synapses with their contralateral homologues. These contacts occur near the midline, sometimes in the major mass of neuropil and sometimes embedded in the extracellular material that ensheathes the neuropil. The contacts are between medium-and small-diameter profiles that are both filled with synaptic vesicles. Our findings indicate that various classes of physiological interactions among HE and HN cells are mediated by anatomically distinct types of contacts and, at least in some cases, are segregated from each other on the neuritic trees of the cells. 相似文献
7.
Summary Serotonin-immunoreactive (5-HTi) neurons were mapped in the larval central nervous system (CNS) of the dipterous flies Calliphora erythrocephala and Sarcophaga bullata. Immunocytochemistry was performed on cryostat sections, paraffin sections, and on the entire CNS (whole mounts).The CNS of larvae displays 96–98 5-HTi cell bodies. The location of the cell bodies within the segmental cerebral and ventral ganglia is consistent among individuals. The pattern of immunoreactive fibers in tracts and within neuropil regions of the CNS was resolved in detail. Some 5-HTi neurons in the CNS possess axons that run through peripheral nerves (antenno-labro-frontal nerves).The suboesophagealand thoracico-abdominal ganglia of the adult blowflies were studied for a comparison with the larval ventral ganglia. In the thoracico-abdominal ganglia of adults the same number of 5-HTi cell bodies was found as in the larvae except in the metathoracic ganglion, which in the adult contains two cell bodies less than in the larva. The immunoreactive processes within the neuropil of the adult thoracico-abdominal ganglia form more elaborate patterns than those of the larvae, but the basic organization of major fiber tracts was similar in larval and adult ganglia. Some aspects of postembryonic development are discussed in relation to the transformation of the distribution of 5-HTi neurons and their processes into the adult pattern. 相似文献
8.
Pigment-dispersing factor (PDF) is an octadeca-neuropeptide widely distributed in the insect brain and suggested to be involved in the insect circadian systems. We have examined its effects on the neuronal activity of the brain efferents in the optic stalk including medulla bilateral neurons (MBNs) in the cricket, Gryllus bimaculatus. The MBNs are visually responding interneurons connecting the bilateral medulla, which show a clear day/night change in their light responsiveness that is greater during the night. Microinjection of PDF into the optic lobe induced a significant increase in the spontaneous activity of the brain efferents and the photo-responsiveness of the MBNs during the day, while little change was induced during the night. The enhancing effects began to occur about 20 min after the injection and another 10 min was necessary to reach the maximal level. The effects of PDF were dose-dependent. When 22 nl of anti-Gryllus-PDF (1:200) IgG was injected into the medulla, the photo-responsiveness of the MBNs was suppressed in both the day and the night with greater magnitude during the night. No significant suppression was induced by injection of the same amount of IgG from normal rabbit serum. These results suggest that in the cricket optic lobe, PDF is released during the night and enhances MBNs' photo-responsiveness to set their night state. 相似文献
9.
In the fly, visually guided course control is accomplished by a set of 60 large-field motion-sensitive neurons in each brain hemisphere. These neurons have been shown to receive retinotopic motion information from local motion detectors on their dendrites. In addition, recent experiments revealed extensive coupling between the large-field neurons through electrical synapses. These two processes together give rise to their broad and elaborate receptive fields significantly surpassing the extent of their dendritic fields. Here, we demonstrate that the electrical connections between different large-field neurons can be visualized using Neurobiotin dye injection into a single one of them. When combined with a fluorescent dye which does not cross electrical synapses, the injected cell can be identified unambiguously. The Neurobiotin staining corroborates the electrical coupling postulated amongst the cells of the vertical system (VS-cells) and between cells of the horizontal system (HS-cells and CH-cells). In addition, connections between some cells are revealed that have so far not been considered as electrically coupled. 相似文献
10.
11.
The medulla bilateral neurons (MBNs) in the cricket brain directly connect two optic lobes and have been suggested to be involved in mutual coupling between the bilateral optic lobe circadian pacemakers. Single unit analysis with intracellular recording and staining with Lucifer Yellow was carried out to reveal morphology and physiology of the MBNs. Neurons having a receptive field in the rostral part of the compound eye showed greater response and a higher sensitivity to light than those having receptive fields in the ventro-caudal or dorsal portions. The MBN showed diurnal change in their responsiveness to light; the light-induced response in the night was about 1.3, 5 and 2 times of that in the day in MBN-1s, -3s and -4s, respectively. These results suggest that the MBNs mainly encode the temporal information by the magnitude of light-induced responses. The differences in magnitude of light-induced responses and of daily change in photo-responsiveness among MBNs may suggest that each group of MBNs plays different functional role in visual and/or circadian systems. 相似文献
12.
Olaf Breidbach 《Development genes and evolution》1987,196(7):450-459
Summary The fate of ascending projections of thoracic interneurons in the metamorphosing brain of Tenebrio molitor is described. Persistent brain neurons were identified and their fate is described during metamorphosis. The projection sites of ascending elements are invariable throughout metamorphosis both in quantitative and in qualitative terms. Some of these ascending neurons are serotonin-immunoreactive and this set of neurons maintains a constant projection site within the metamorphosing brain. The alterations in the projection sites of these and other ascending neurons in the ventral nerve cord were analysed experimentally. The central projection sites of these persistent ascending neurons are not important for the maintenance of their nerve cord projections throughout metamorphosis. Experimental deletion of ascending neurons which project into the suboesophageal ganglion varies the shape of persistent central neurons. 相似文献
13.
R. Zeiner H. Tichy 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1998,182(4):467-473
Although it has been known that olfactory and mechanical inputs from the antenna converge in the antennal lobe of the deutocerebrum
of the American cockroach, the capacity of antennal lobe neurons to integrate cues from these modalities was never examined.
In the present study, neurons responsive to both the odor of lemon oil and to lateral displacement of the antenna were used
to compare the effects of unimodal and bimodal stimulation. The combination of olfactory and mechanical stimuli produced increases
over unimodal olfactory responses in 61% (30/49) of the neurons. In the remaining neurons the response either decreased (20%;
10/49), or no bimodal interaction was apparent (19%; 9/49). Dye injection (lucifer yellow) following physiological characterization
revealed that these bimodal neurons are local neurons or projection neurons. The antennal lobe links the inputs from olfactory
and mechanosensory systems and provides a substrate through which olfactory and mechanical stimuli influence one another's
effects.
Accepted: 29 September 1997 相似文献
14.
B. Grünewald 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1999,185(6):565-576
Mushroom bodies are central brain structures and essentially involved in insect olfactory learning. Within the mushroom bodies
γ-aminobutyric acid (GABA)-immunoreactive feedback neurons are the most prominent neuron group. The plasticity of inhibitory
neural activity within the mushroom body was investigated by analyzing modulations of odor responses of feedback neurons during
olfactory learning in vivo. In the honeybee, Apis mellifera, feedback neurons were intracellularly recorded at their neurites. They produced complex patterns of action potentials without
experimental stimulation. Summating postsynaptic potentials indicate that their synaptic input region lies within the lobes.
Odor and antennal sucrose stimuli evoked excitatory phasic-tonic responses. Individual neurons responded to various odors;
responses of different neurons to the same odor were highly variable. Response modulations were determined by comparing odor
responses of feedback neurons before and after one-trial olfactory conditioning or sensitisation. Shortly after pairing an
odor stimulus with a sucrose reward, odor-induced spike activity of feedback neurons decreased. Repeated odor stimulations
alone, equally spaced as in the conditioning experiment, did not affect the odor-induced excitation. A single sensitisation
trial also did not alter odor responses. These findings indicate that the level of odor-induced inhibition within the mushroom
bodies is specifically modulated by experience.
Accepted: 9 September 1999 相似文献
15.
A. C. James D. Osorio 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1996,178(2):183-199
We describe visual responses of seventeen physiological classes of columnar neuron from the retina, lamina and medulla of the locust (Locusta migratoria) optic lobe. Many of these neurons were anatomically identified by neurobiotin injection. Characterisation of neuronal responses was made by moving and flash stimuli, and by two system identification techniques: 1. The first-order spatiotemporal kernel was estimated from response to a spatiotemporal white-noise stimulus; 2. A set of kernels to second order was derived by the maximal-length shift register (M-sequence) technique, describing the system response to a two-channel centre-surround stimulus. Most cells have small receptive fields, usually with a centre diameter of about 1.5°, which is similar to that of a single receptor in the compound eye. Linear response components show varying spatial and temporal tuning, although lateral inhibition is generally fairly weak. Second-order nonlinearities often have a simple form consistent with a static nonlinear transformation of the input from the large monopolar cells of the lamina followed by further linear filtering.Abbreviations
LMC
large monopolar cell
-
LVF
long visual fibre
-
RF
receptive field
-
SMC
small monopolar cell
-
SVF
short visual fibre 相似文献
16.
Michael Stern 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2009,195(2):123-137
The locust’s optic lobe contains a system of wide-field, multimodal, centrifugal neurons. Two of these cells, the protocerebrum-medulla-neurons
PM4a and b, are octopaminergic. This paper describes a second pair of large centrifugal neurons (the protocerebrum-medulla-neurons
PM1a and PM1b) from the brain of Locusta migratoria based on intracellular cobalt fills, electrophysiology, and immunocytochemistry. They originate and arborise in the central
brain and send processes into the medulla of the optic lobe. Double intracellular recording from the same cell suggests input
in the central brain and output in the optic lobe. The neurons show immunoreactivity to gamma-amino-butyric acid and its synthesising
enzyme, glutamate decarboxylase. The PM1 cells are movement sensitive and show habituation to repeated visual stimulation.
Bath application of octopamine causes the response to dishabituate. A very similar effect is produced by electrical stimulation
of one of an octopaminergic PM4 neuron. This effect can be blocked by application of the octopamine antagonists, mianserin
and phentolamine. This readily accessible system of four wide-field neurons provides a system suitable for the investigation
of octopaminergic effects on the visual system at the cellular level. 相似文献
17.
Cole Gilbert Nicholas J. Strausfeld 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,169(4):395-411
Summary Intracellular recording and Lucifer yellow dye filling of male fleshflies, Sarcophaga bullata, have revealed male-specific neurons in the lobula, the axons of which project to the origin of premotor channels supplying flight motor neurons. Dendrites of male-specific neurons visit areas of the retinotopic mosaic supplied by the retina's acute zone, which is used by males to keep the image of a conspecific female centered during aerial pursuit. Only males engage in high-speed acrobatic chases, and male-specific neurons are suspected to under-lie this behavior. Physiological determination of receptive fields of male-specific neurons substantiates the fields predicted from anatomical studies and demonstrates that they subtend the acute zone. Male-specific neurons respond in a manner predicted on theoretical grounds from observations of tracking behavior. Such properties include directional selectivity to visual motion and higher sensitivity to motion of small images than to wide-field motion. The present account substantiates and extends neuroanatomical evidence that predicts that male-specific lobula neurons comprise a distinct circuit mediating conspecific tracking. 相似文献
18.
植物为数十万种昆虫提供各种资源,如食物、交配、产卵和躲避天敌的场所。目前对昆虫检测植物寄主的研究主要关注昆虫嗅觉系统和植物寄主挥发物之间的相互作用,对昆虫视觉系统发挥的作用关注较少。近年来,对昆虫视觉器官、光行为反应及分子生物学的研究表明,昆虫具有优异的视觉能力,能够辨别植物寄主的颜色、大小和轮廓,应该将视觉纳入昆虫检测植物寄主的研究中。昆虫能够利用视觉信号准确检测寄主,远距离时,主要依靠植物寄主轮廓检测寄主,近距离时,寄主的大小、颜色和形状发挥重要作用。利用昆虫视觉识别寄主的专一性研制诱捕装置,可为害虫的监测和防治提供一定的理论基础。 相似文献
19.
Summary Three giant horizontal-motion-sensitive (HS) neurons arise in the lobula plate. Their axons terminate ipsilaterally in the medial deutocerebrum and suboesophageal ganglion. Both Golgi impregnations and cobalt fills demonstrate that endings of the two HS cells, representing the upper and middle third of the retina, differ in shape and location from that of the HS cell subtending the lower third of the eye. This dichotomy is reflected by the terminals of a pair of centrifugal horizontal cells (CH), one of which invades lobula plate neuropil subtending the upper two-thirds of the retina. The other overlaps the dendrites of the HS cell subtending the lower one-third of the retina.The HS cells are cobalt-coupled to a variety of complexly arborizing descending neurons. In Musca domestica, gap-junction-like apposition areas have been observed between HS axon collaterals and descending neuron dendrites. The three HS cells also share conventional chemical synapses with postsynaptic elements, which include the dendritic spines of descending neurons. Unlike the giant vertical-motion-sensitive neurons of the lobula plate, whose relationships with descending neurons appear to be relatively simple, the horizontal cells end on a large number of descending neurons where they comprise one of several different populations of terminals. These descending neurons terminate within various centres of the thoracic ganglia, including neuropil supplying leg, neck, and flight muscle. 相似文献
20.
Summary We quantitatively describe 2-deoxyglucose (2-DG) neuronal activity labeling patterns in the first and second visual neuropil regions of the Drosophila brain, the lamina and the medulla. Careful evaluation of activity patterns resulting from large-field motion stimulation shows that the stimulus-specific bands in the medulla correspond well to the layers found in a quantitative analysis of Golgi-impregnated columnar neurons. A systematic analysis of autoradiograms of different intensities reveals a hierarchy of labeling in the medulla. Under certain conditions, only neurons of the lamina are labeled. Their characteristic terminals in the medulla are used to differentiate among the involved lamina monopolar cell types. The 2-DG banding pattern in the medulla marks layers M1 and M5, the input layers of pathway p1 (the L1 pathway). Therefore, activity labeling of L1 by motion stimuli is very likely. More heavily labeled autoradiograms display activated cells also in layers M2, M9, and M10. The circuitry involved in the processing of motion information thus concentrates on pathways p1 and p2. Layers M4 and M6 of the distal medulla hardly display any label under the stimulus conditions used. The functional significance of selective activity in the medulla is discussed. 相似文献