首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The formation of complexes containing high levels of DNA melting at the ribosomal RNA rrnB P1 promoter in vitro is shown to be facilitated by DNA supercoiling or low salt. The effector nucleotide ppGpp is ineffective under these conditions. The loss of supercoils or addition of salt increases the effectiveness of ppGpp in inhibiting formation of these complexes. In vivo plasmid DNA supercoiling is shown to decrease during starvation protocols that also increase levels of ppGpp. The results suggest that ppGpp regulation may be affected by the state of DNA supercoiling in vivo.  相似文献   

10.
11.
Y P Tsao  H Y Wu  L F Liu 《Cell》1989,56(1):111-118
  相似文献   

12.
13.
14.
H Y Wu  S H Shyy  J C Wang  L F Liu 《Cell》1988,53(3):433-440
  相似文献   

15.
Reverse gyrase is a unique type IA topoisomerase that can introduce positive supercoils into DNA. We have investigated some of the biochemical properties of Archaeoglobus fulgidus reverse gyrase. It can mediate three distinct supercoiling reactions depending on the adenine nucleotide cofactor that is present in the reaction. Besides the ATP-driven positive supercoiling reaction, the enzyme can introduce negative supercoils with a nonhydrolyzable analog, adenylyl imidodiphosphate. In the presence of ADP the plasmid DNA is relaxed almost completely, leaving a very low level of positive supercoiling. Surprisingly, the final supercoiling extent for all three distinct reactions depends on the stoichiometry of enzyme to DNA. This dependence is not due to the difference of reaction rate, suggesting that the amount of enzyme bound to DNA is an important determinant for the final supercoiling state of the reaction product. Reverse gyrase also displays exquisite sensitivity toward temperature. Raising the reaction temperatures from 80 to 85 degrees C, both of which are within the optimal growth temperature of A. fulgidus, greatly increases enzyme activity for all the supercoiling reactions. For the reaction with AMPPNP, the product is a hypernegatively supercoiled DNA. This dramatic enhancement of the reverse gyrase activity is also correlated with the appearance of DNA in a pre-melting state at 85 degrees C, likely due to the presence of extensively unwound regions in the plasmid. The possible mechanistic insights from these findings will be presented here.  相似文献   

16.
It has long been known that Escherichia coli cells deprived of topoisomerase I (topA null mutants) do not grow. Because mutations reducing DNA gyrase activity and, as a consequence, negative supercoiling, occur to compensate for the loss of topA function, it has been assumed that excessive negative supercoiling is somehow involved in the growth inhibition of topA null mutants. However, how excess negative supercoiling inhibits growth is still unknown. We have previously shown that the overproduction of RNase HI, an enzyme that degrades the RNA portion of an R-loop, can partially compensate for the growth defects because of the absence of topoisomerase I. In this article, we have studied the effects of gyrase reactivation on the physiology of actively growing topA null cells. We found that growth immediately and almost completely ceases upon gyrase reactivation, unless RNase HI is overproduced. Northern blot analysis shows that the cells have a significantly reduced ability to accumulate full-length mRNAs when RNase HI is not overproduced. Interestingly, similar phenotypes, although less severe, are also seen when bacterial cells lacking RNase HI activity are grown and treated in the same way. All together, our results suggest that excess negative supercoiling promotes the formation of R-loops, which, in turn, inhibit RNA synthesis.  相似文献   

17.
18.
DNA gyrase can supercoil DNA circles as small as 174 base pairs.   总被引:9,自引:2,他引:7       下载免费PDF全文
DNA gyrase introduces negative supercoils into closed-circular DNA using the free energy of ATP hydrolysis. Consideration of steric and thermodynamic aspects of the supercoiling reaction indicates that there should be a lower limit to the size of DNA circle which can be supercoiled by gyrase. We have investigated the supercoiling reaction of circles from 116-427 base pairs (bp) in size and have determined that gyrase can supercoil certain relaxed isomers of circles as small as 174 bp, dependent on the final superhelix density of the supercoiled product. Furthermore, this limiting superhelical density (-0.11) is the same as that determined for the supercoiling of plasmid pBR322. We also find that although circles in the range 116-152 bp cannot be supercoiled, they can nevertheless be relaxed by gyrase when positively supercoiled. These data suggest that the conformational changes associated with the supercoiling reaction can be carried out by gyrase in a circle as small as 116 bp. We discuss these results with respect to the thermodynamics of DNA supercoiling and steric aspects of the gyrase mechanism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号