首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

Liver fibrosis is the common sequel of chronic liver diseases. Recent studies have identified hepatic stellate cells as the primary cell type mediating hepatic fibrogenesis. It has been demonstrated that hepatic stellate cells undergo a process of activation during the development of liver fibrosis. During the activation process, hepatic stellate cells acquire myofibroblast-like phenotype featuring the expression of smooth muscle alpha actin. Interferons have been employed for the treatment of viral hepatitis. However, it is unclear what is the effect of interferons on the prevention and treatment of liver fibrosis. Moreover, it is not clear whether there are any differences among interferon alpha, interferon beta, and interferon gamma in the treatment of liver fibrosis. Therefore, our objective in current study is to investigate the effects of rat interferon-α, interferon-β, and interferon-γ on the proliferation and activation of rat hepatic stellate cells.  相似文献   

3.
Oxidative stress is involved in hepatic fibrogenesis. Activation of hepatic stellate cells (HSCs), the key effectors in hepatic fibrogenesis, is characterized by overproduction of extracellular matrix. Astragaloside IV, the active component of Radix Astragali, has antioxidant properties and antifibrotic potential in renal fibrosis. Little is known about the role of astragaloside IV in liver and its involvement in hepatic fibrosis. This study aims at evaluating the antifibrotic potential of astragaloside IV and characterizing involved signal transduction pathways in culture-activated HSCs. Our results show that astragaloside IV attenuates oxidative stress in culture-activated HSCs, as demonstrated by scavenging reactive oxygen species and reducing lipid peroxidation, and elevates the level of cellular glutathione by stimulating Nrf2gene expression. Depletion of cellular glutathione by buthionine sulfoximine or abrogation of p38 MAPK by SB-203580 evidently eliminates the inhibitory effects of astragaloside IV on genes relevant to HSC activation. These results demonstrate that astragaloside IV inhibits HSC activation by inhibiting generation of oxidative stress and associated p38 MAPK activation and provide novel insights into the mechanisms of astragaloside IV as an antifibrogenic candidate in the prevention and treatment of liver fibrosis.  相似文献   

4.
Matrix metalloproteinase (MMP) plays an important role in homeostatic regulation of the extracellular environment and degradation of matrix. During liver fibrosis, several MMPs, including MMP-2, are up-regulated in activated hepatic stellate cells, which are responsible for exacerbation of liver cirrhosis. However, it remains unclear how loss of MMP-2 influences molecular dynamics associated with fibrogenesis in the liver. To explore the role of MMP-2 in hepatic fibrogenesis, we employed two fibrosis models in mice; toxin (carbon tetrachloride, CCl4)-induced and cholestasis-induced fibrosis. In the chronic CCl4 administration model, MMP-2 deficient mice exhibited extensive liver fibrosis as compared with wild-type mice. Several molecules related to activation of hepatic stellate cells were up-regulated in MMP-2 deficient liver, suggesting that myofibroblastic change of hepatic stellate cells was promoted in MMP-2 deficient liver. In the cholestasis model, fibrosis in MMP-2 deficient liver was also accelerated as compared with wild type liver. Production of tissue inhibitor of metalloproteinase 1 increased in MMP-2 deficient liver in both models, while transforming growth factor β, platelet-derived growth factor receptor and MMP-14 were up-regulated only in the CCl4 model. Our study demonstrated, using 2 experimental murine models, that loss of MMP-2 exacerbates liver fibrosis, and suggested that MMP-2 suppresses tissue inhibitor of metalloproteinase 1 up-regulation during liver fibrosis.  相似文献   

5.
Transforming growth factor-beta1 (TGF-β1) mediates the regulation of extracellular matrix via reactive oxygen species (ROS) and calcium influx, both are activators of hepatic stellate cells (HSC) which play a critical role in hepatic fibrogenesis. Hence one can use ROS assay as the main screening tool for molecules that might antagonize the process of liver fibrosis. A retinoic acid derivative isolated from the mycelium of Phellinus linteus that down-regulates ROS generation and calcium influx in HSC-T6 cells was thus obtained in our screening process. The retinoic acid derivative also reverses an early liver fibrosis, as assayed by liver contents of hydroxyproline, α-smooth muscle actin (α-SMA), and collagen 1A2, in an early liver fibrosis model we established previously where an inducible expression vector containing a TGF-β gene was hydrodynamically transferred into a testing animal. Retinoic acid derivative thus acts both in vitro and in vivo to prevent liver fibrosis at an early phase.  相似文献   

6.
Cysteine-rich protein 61 (CCN1/CYR61) is a CCN (CYR61, CTGF (connective tissue growth factor), and NOV (Nephroblastoma overexpressed gene)) family matricellular protein comprising six secreted CCN proteins in mammals. CCN1/CYR61 expression is associated with inflammation and injury repair. Recent studies show that CCN1/CYR61 limits fibrosis in models of cutaneous wound healing by inducing cellular senescence in myofibroblasts of the granulation tissue which thereby transforms into an extracellular matrix-degrading phenotype. We here investigate CCN1/CYR61 expression in primary profibrogenic liver cells (i.e., hepatic stellate cells and periportal myofibroblasts) and found an increase of CCN1/CYR61 expression during early activation of hepatic stellate cells that declines in fully transdifferentiated myofibroblasts. By contrast, CCN1/CYR61 levels found in primary parenchymal liver cells (i.e., hepatocytes) were relatively low compared to the levels exhibited in hepatic stellate cells and portal myofibroblasts. In models of ongoing liver fibrogenesis, elevated levels of CCN1/CYR61 were particularly noticed during early periods of insult, while expression declined during prolonged phases of fibrogenesis. We generated an adenovirus type 5 encoding CCN1/CYR61 (i.e., Ad5-CMV-CCN1/CYR61) and overexpressed CCN1/CYR61 in primary portal myofibroblasts. Interestingly, overexpressed CCN1/CYR61 significantly inhibited production of collagen type I at both mRNA and protein levels as evidenced by quantitative real-time polymerase chain reaction, Western blot and immunocytochemistry. CCN1/CYR61 further induces production of reactive oxygen species (ROS) leading to dose-dependent cellular senescence and apoptosis. Additionally, we demonstrate that CCN1/CYR61 attenuates TGF-β signaling by scavenging TGF-β thereby mitigating in vivo liver fibrogenesis in a bile duct ligation model. Conclusion: In line with dermal fibrosis and scar formation, CCN1/CYR61 is involved in liver injury repair and tissue remodeling. CCN1/CYR61 gene transfer into extracellular matrix-producing liver cells is therefore potentially beneficial in liver fibrotic therapy.  相似文献   

7.
Hepatic stellate cells (HSCs) and transdifferentiated myofibroblasts are the principal producers of excessive extracellular matrix in liver fibrosis and cirrhosis. Activation of HSC is regulated by several cytokines and growth factors, including platelet-derived growth factor B-chain (PDGF-B), a potent mitogen for HSC, and overexpressed during hepatic fibrogenesis. Previous studies showed that MAPK and phosphatidylinositol 3' kinase are key signaling pathways involved in PDGF-induced stimulation of HSC. Based on the involvement of PDGF-B in fibrogenesis, reducing ligand stimulation of proliferative cytokine- or growth factor receptors interfering with receptor signaling therefore presents an interesting strategy for hepatic fibrosis prevention or interruption. We therefore generated an adenoviral vector serotype 5 (Ad5) expressing an antisense mRNA of the PDGF B-chain (Ad5-CMV-asPDGF) for application in an experimentally induced liver fibrogenesis model. The transgene clearly showed the ability to down-regulate endogenous PDGF B-chain and PDGFRbeta mRNA in culture-activated HSC and rat livers. The asPDGF mRNA also attenuates experimental liver fibrogenesis indicated by reduced levels of alpha-SMA and collagen type I expression.  相似文献   

8.
BACKGROUND/AIMS: Profibrogenic TGF-beta signaling in hepatic stellate cells is modulated during transdifferentiation. Strategies to abrogate TGF-beta effects provide promising antifibrotic results, however, in vivo data regarding Smad activation during fibrogenesis are scarce. METHODS: Here, liver fibrosis was assessed subsequent to bile duct ligation by determining liver enzymes in serum and collagen deposition in liver tissue. Activated hepatic stellate cells were identified by immunohistochemistry and immunoblots for alpha smooth muscle actin. Cellular localization of Smad3 and Smad7 proteins was demonstrated by immunohistochemistry. RTPCR for Smad4 and Smad7 was conducted with total RNA and Northern blot analysis for Smad7 with mRNA. Whole liver lysates were prepared to detect Smad2/3/4 and phospho- Smad2/3 by Western blotting. RESULTS: Cholestasis induces TGF-beta signaling via Smad3 in vivo, whereas Smad2 phosphorylation was only marginally increased. Smad4 expression levels were unchanged. Smad7 expression was continuously increasing with duration of cholestasis. Hepatocytes of fibrotic lesions exhibited nuclear staining Smad3. In contrast to this, Smad7 expression was localized to activated hepatic stellate cells. CONCLUSIONS: Hepatocytes of damaged liver tissue display increased TGF-beta signaling via Smad3. Further, negative feedback regulation of TGF-beta signaling by increased Smad7 expression in activated hepatic stellate cells occurs, however does not interfere with fibrogenesis.  相似文献   

9.
Spontaneous hepatic fibrosis in transgenic mice overexpressing PDGF-A   总被引:2,自引:0,他引:2  
Platelet derived growth factor (PDGF) plays a central role in repair mechanisms after acute and chronic tissue damage. To further evaluate the role of PDGF-A in liver fibrogenesis in vivo, we generated transgenic mice with hepatocyte-specific overexpression of PDGF-A using the CRP-gene promoter. Transgenic but not wildtype mice showed expression of PDGF-A mRNA in the liver. Hepatic PDGF-A overexpression was accompanied by a significant increase in hepatic procollagen III mRNA expression as well as TGF-beta1 expression. Liver histology showed increased deposition of extracellular matrix in transgenic but not in wildtype mice. PDGF-A-transgenic mice showed positive sinusoidal staining for alpha-SMA indicating an activation of hepatic stellate cells. Since the profibrogenic effect of PDGF-A was accompanied by increased TGF-beta1 protein concentration in the liver of transgenic mice, it can be postulated that PDGF-A upregulates expression of TGF-beta1 which is a strong activator of hepatic stellate cells. Thus, these results point towards a fibrosis induction by PDGF-A via the TGF-beta1 signalling pathway. In conclusion, expression and functional analysis of PDGF-A in the liver of transgenic mice suggest a relevant profibrogenic role of PDGF-A via TGF-beta1 induction. Counteracting PDGF-A may therefore be one of the effects of tyrosine kinase inhibitors which showed protective effects in animal models of liver fibrosis.  相似文献   

10.
Liver fibrosis is a common characteristic of chronic liver diseases. The activation of hepatic stellate cells (HSCs) plays a key role in fibrogenesis in response to liver injury, yet the mechanism by which damaged hepatocytes modulate the activation of HSCs is poorly understood. Our previous studies have established that liver-specific deletion of O-GlcNAc transferase (OGT)leads to hepatocyte necroptosis and spontaneous fibrosis. Here, we report that OGT-deficient hepatocytes secrete trefoil factor 2 (TFF2) that activates HSCs and contributes to the fibrogenic process. The expression and secretion of TFF2 are induced in OGT-deficient hepatocytes but not in WT hepatocytes. TFF2 activates the platelet-derived growth factor receptor beta signaling pathway that promotes the proliferation and migration of primary HSCs. TFF2 protein expression is elevated in mice with carbon tetrachloride-induced liver injury. These findings identify TFF2 as a novel factor that mediates intercellular signaling between hepatocytes and HSCs and suggest a role of the hepatic OGT–TFF2 axis in the process of fibrogenesis.  相似文献   

11.
The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.  相似文献   

12.
肝星状细胞是肝脏中重要的间质细胞,是肝细胞外基质的主要来源.表皮形态发生素(epimorphin、EPM、syntaxin2)在肝脏发育、再生及癌变过程中发挥了重要的作用,目前其表达变化的调控机制及对肝星状细胞的作用还未有报道.通过对肝组织标本进行检测,发现肝纤维化过程中肝星状细胞表达EPM上调.从表观遗传学的角度对EPM表达变化调控机制进行研究,发现DNA去甲基化促进了EPM的表达.为了研究EPM对肝星状细胞的可能的调节作用,将EPM表达质粒转染肝星状细胞,之后检测了EPM对肝星状细胞增殖及迁移能力的变化.结果证明EPM能够促进肝星状细胞的增殖与迁移.本研究发现,激活的肝星状细胞高表达EPM可能是由于DNA去甲基化引起的,同时,高表达的EPM能够促进肝星状细胞的增殖与迁移,进而促进肝纤维化进展.  相似文献   

13.
Liver fibrosis occurs in most types of chronic liver diseases and is characterized by excessive accumulation of extracellular matrix proteins, leading to disruption of tissue function and eventually organ failure. Transforming growth factor (TGF)-β represents an important pro-fibrogenic factor and aberrant TGF-β action has been implicated in many disease processes of the liver. Endoglin is a TGF-β co-receptor expressed mainly in endothelial cells that has been shown to differentially regulates TGF-β signal transduction by inhibiting ALK5-Smad2/3 signalling and augmenting ALK1-Smad1/5 signalling. Recent reports demonstrating upregulation of endoglin expression in pro-fibrogenic cell types such as scleroderma fibroblasts and hepatic stellate cells have led to studies exploring the potential involvement of this TGF-β co-receptor in organ fibrosis. A recent article by Meurer and colleagues now shows that endoglin expression is increased in transdifferentiating hepatic stellate cells in vitro and in two different models (carbon tetrachloride intoxication and bile duct ligation) of liver fibrosis in vivo. Moreover, they show that endoglin overexpression in hepatic stellate cells is associated with enhanced TGF-β-driven Smad1/5 phosphorylation and α-smooth muscle actin production without altering Smad2/3 signaling. These findings suggest that endoglin may play an important role in hepatic fibrosis by altering the balance of TGF-β signaling via the ALK1-Smad1/5 and ALK-Smad2/3 pathways and raise the possibility that targeting endoglin expression in transdifferentiating hepatic stellate cells may represent a novel therapeutic strategy for the treatment of liver fibrosis.  相似文献   

14.
Liver fibrosis is overly exuberant wound healing that leads to portal hypertension or liver cirrhosis. Recent studies have demonstrated the functions of bone morphogenetic protein 9 (BMP9) in liver fibrosis, and thus, targeting liver-specific BMP9 abnormalities will become an attractive approach for developing therapeutics to treat liver fibrosis. Here, we reveal that BMP9 serves as a valuable serum diagnostic indicator and efficient therapeutic target to attenuate liver fibrogenesis. Our analysis of biopsies from liver fibrotic patients revealed that higher BMP9 levels accompanied advanced stages of liver fibrosis. In mouse models, recombinant Bmp9 overexpression accelerated liver fibrosis, and adenovirus-mediated Bmp9 knockdown attenuated liver fibrogenesis. Intriguingly, BMP9 directly stimulated hepatic stellate cell activation via the SMAD signaling pathway to enhance hepatic fibrosis. Moreover, an inhibitory monoclonal antibody targeting Bmp9 was efficacious in treatment of mice with liver fibrosis. These observations delineate a novel model in which BMP9 directly drives SMAD/ID1 signaling in hepatic stellate cells, which modulates liver fibrogenesis development. Moreover, the findings unveil a promising surrogate biomarker for the diagnosis of hepatic fibrosis, thereby representing an efficient “BMP9 neutralization” approach in alleviating hepatic fibrosis.  相似文献   

15.
Activated hepatic stellate cells are reported to play a significant role in liver fibrogenesis. Beside the phenotype reversion and apoptosis of activated hepatic stellate cells, the senescence of activated hepatic stellate cells limits liver fibrosis. Our previous researches have demonstrated that interleukin-10 could promote hepatic stellate cells senescence via p53 signaling pathway in vitro. However, the relationship between expression of p53 and senescence of activated hepatic stellate cells induced by interleukin-10 in fibrotic liver is unclear. The purpose of present study was to explore whether p53 plays a crucial role in the senescence of activated hepatic stellate cells and degradation of collagen mediated by interleukin-10. Hepatic fibrosis animal model was induced by carbon tetrachloride through intraperitoneal injection and transfection of interleukin-10 gene to liver was performed by hydrodynamic-based transfer system. Depletions of p53 in vivo and in vitro were carried out by adenovirus-based short hairpin RNA against p53. Regression of fibrosis was assessed by liver biopsy and collagen staining. Cellular senescence in the liver was observed by senescence-associated beta-galactosidase (SA-β-Gal) staining. Immunohistochemistry, immunofluorescence double staining, and Western blot analysis were used to evaluate the senescent cell and senescence-related protein expression. Our data showed that interleukin-10 gene treatment could lighten hepatic fibrosis induced by carbon tetrachloride and induce the aging of activated hepatic stellate cells accompanied by up-regulating the expression of aging-related proteins. We further demonstrated that depletion of p53 could abrogate up-regulation of interleukin-10 on the expression of senescence-related protein in vivo and vitro. Moreover, p53 knockout in fibrotic mice could block not only the senescence of activated hepatic stellate cells, but also the degradation of fibrosis induced by interleukin-10 gene intervention. Taken together, our results suggested that interleukin-10 gene treatment could attenuate carbon tetrachloride-induced hepatic fibrosis by inducing senescence of activated hepatic stellate cells in vivo, and this induction was closely related to p53 signaling pathway.  相似文献   

16.
肝纤维化是肝脏对一系列慢性刺激的损伤修复反应,以细胞外基质的过度沉积为主要特征。许多研究证明人肝星状细胞(hepatic stellate cells,HSCs)的活化与增殖是肝纤维化形成的中心环节。因此,肝星状细胞激活机制及抑制活化途径的研究和发现成为防治肝纤维化的关键。目前,国际上肝纤维化药物研发的思路之一是从肝纤维化发生的机制,即肝星状细胞激活机制中寻找分子靶点。近年来,对各种使肝星状细胞活化的信号通路及相关抑制机制的研究取得了一些进展,但由于肝星状细胞活化是多条信号通路相互协调的结果,其复杂性、未知性造成了阻断方式的特异性、多样性,使该研究还仅限于实验室阶段,要想应用于临床还需要大量实验证明。该文就最新发现的肝星状细胞激活和抑制及相关分子机制作一综述。  相似文献   

17.
Systematic studies on hepatic stellate cells and myofibroblasts have so far mainly focused on cells located in the perisinusoidal space of Disse, the so-called littoral compartment. Here, these cells play a key role for intralobular fibrogenesis and sinusoidal capillarization. However, advanced hepatic fibrosis and cirrhosis are characterized by portal tract fibrosis and septal fibrosis, thus involving cells outside the perisinusoidal space. To study the question as to whether hepatic stellate cells occur and are expanded in an extralittoral (extrasinusoidal) compartment in cirrhogenesis, we systematically analyzed the distribution and density of desminreactive stellate cells in a rat model of hepatic fibrosis. Fibrosis and remodeling of the liver were induced by bile duct ligation, and stellate cells were identified by single and double immunohistochemistry. We can show that desmin-reactive cells are reproducibly detectable in extralittoral compartments of the normal and fibrotic rat liver. Periductular extralittoral stellate cells are significantly more frequent in cirrhosis, indicating that extralittoral stellate cells expand in concert with proliferating ductules. The findings suggest that ductular proliferation thought to represent a pacemaker of hepatic remodeling is accompanied by a population of cells exhibiting the same phenotype as perisinusoidal stellate cells.  相似文献   

18.
Classical junctional adhesion molecules JAM-A, JAM-B and JAM-C influence vascular permeability, cell polarity as well as leukocyte recruitment and immigration into inflamed tissue. As the vasculature becomes remodelled in chronically injured, fibrotic livers we aimed to determine distribution and role of junctional adhesion molecules during this pathological process. Therefore, livers of naïve or carbon tetrachloride-treated mice were analyzed by immunohistochemistry to localize all 3 classical junctional adhesion molecules. Hepatic stellate cells and endothelial cells were isolated and subjected to immunocytochemistry and flow cytometry to determine localization and functionality of JAM-B and JAM-C. Cells were further used to perform contractility and migration assays and to study endothelial tubulogenesis and pericytic coverage by hepatic stellate cells. We found that in healthy tissue, JAM-A was ubiquitously expressed whereas JAM-B and JAM-C were restricted to the vasculature. During fibrosis, JAM-B and JAM-C levels increased in endothelial cells and JAM-C was de novo generated in myofibroblastic hepatic stellate cells. Soluble JAM-C blocked contractility but increased motility in hepatic stellate cells. Furthermore, soluble JAM-C reduced endothelial tubulogenesis and endothelial cell/stellate cell interaction. Thus, during liver fibrogenesis, JAM-B and JAM-C expression increase on the vascular endothelium. More importantly, JAM-C appears on myofibroblastic hepatic stellate cells linking them as pericytes to JAM-B positive endothelial cells. This JAM-B/JAM-C mediated interaction between endothelial cells and stellate cells stabilizes vessel walls and may control the sinusoidal diameter. Increased hepatic stellate cell contraction mediated by JAM-C/JAM-C interaction may cause intrahepatic vasoconstriction, which is a major complication in liver cirrhosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号