首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many stem cells, including Drosophila germline stem cells (GSCs), divide asymmetrically, producing one stem cell and one differentiating daughter. Cytokinesis is often asymmetric, in that only one daughter cell inherits the midbody ring (MR) upon completion of abscission even in apparently symmetrically dividing cells. However, whether the asymmetry in cytokinesis correlates with cell fate or has functional relevance has been poorly explored. Here we show that the MR is asymmetrically segregated during GSC divisions in a centrosome age–dependent manner: male GSCs, which inherit the mother centrosome, exclude the MR, whereas female GSCs, which we here show inherit the daughter centrosome, inherit the MR. We further show that stem cell identity correlates with the mode of MR inheritance. Together our data suggest that the MR does not inherently dictate stem cell identity, although its stereotypical inheritance is under the control of stemness and potentially provides a platform for asymmetric segregation of certain factors.  相似文献   

2.
Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes.  相似文献   

3.
Stem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that during a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combine histone labeling with DNA Oligopaints to distinguish old versus new histones and visualize their inheritance patterns at a single‐gene resolution in asymmetrically dividing cells in vivo. This strategy can be applied to other biological systems involving cell fate change during development or tissue homeostasis in multicellular organisms.  相似文献   

4.
Asymmetric segregation of damaged proteins at cell division generates a cell that retains damage and a clean cell that supports population survival. In cells that divide asymmetrically, such as Saccharomyces cerevisiae, segregation of damaged proteins is achieved by retention and active transport. We have previously shown that in the symmetrically dividing Schizosaccharomyces pombe there is a transition between symmetric and asymmetric segregation of damaged proteins. Yet how this transition and generation of damage-free cells are achieved remained unknown. Here, by combining in vivo imaging of Hsp104-associated aggregates, a form of damage, with mathematical modeling, we find that fusion of protein aggregates facilitates asymmetric segregation. Our model predicts that, after stress, the increased number of aggregates fuse into a single large unit, which is inherited asymmetrically by one daughter cell, whereas the other one is born clean. We experimentally confirmed that fusion increases segregation asymmetry, for a range of stresses, and identified Hsp16 as a fusion factor. Our work shows that fusion of protein aggregates promotes the formation of damage-free cells. Fusion of cellular factors may represent a general mechanism for their asymmetric segregation at division.  相似文献   

5.
Asymmetric cell division generates two daughter cells of differential gene expression and/or cell shape. Drosophila neuroblasts undergo typical asymmetric divisions with regard to both features; this is achieved by asymmetric segregation of cell fate determinants (such as Prospero) and also by asymmetric spindle formation. The loss of genes involved in these individual asymmetric processes has revealed the roles of each asymmetric feature in neurogenesis, yet little is known about the fate of the neuroblast progeny when asymmetric processes are blocked and the cells divide symmetrically. We genetically created such neuroblasts, and found that in embryos, they were initially mitotic and then gradually differentiated into neurons, frequently forming a clone of cells homogeneous in temporal identity. By contrast, larval neuroblasts with the same genotype continued to proliferate without differentiation. Our results indicate that asymmetric divisions govern lineage length and progeny fate, consequently generating neural diversity, while the progeny fate of symmetrically dividing neuroblasts depends on developmental stages, presumably reflecting differential activities of Prospero in the nucleus.  相似文献   

6.
Proper balance between self-renewal and differentiation of lung-specific progenitors is absolutely required for normal lung morphogenesis/regeneration. Therefore, understanding the behavior of lung epithelial stem/progenitor cells could identify innovative solutions for restoring normal lung morphogenesis and/or regeneration. The Notch inhibitor Numb is a key determinant of asymmetric or symmetric cell division and hence cell fate. Yet Numb proximal-distal expression pattern and symmetric versus asymmetric division are uncharacterized during lung epithelial development. Herein, the authors find that the cell fate determinant Numb is highly expressed and asymmetrically distributed at the apical side of distal epithelial progenitors and segregated to one daughter cell in most mitotic cells. Knocking down Numb in MLE15 epithelial cells significantly increased the number of cells expressing the progenitor cell markers Sox9/Id2. Furthermore, cadherin hole analysis revealed that most distal epithelial stem/progenitor cells in embryonic lungs divide asymmetrically; with their cleavage, planes are predicted to bypass the cadherin hole, resulting in asymmetric distribution of the cadherin hole to the daughter cells. These novel findings provide evidence for asymmetric cell division in distal epithelial stem/progenitor cells of embryonic lungs and a framework for future translationally oriented studies in this area.  相似文献   

7.
8.
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.  相似文献   

9.
Many adult stem cells divide asymmetrically to balance self-renewal and differentiation, thereby maintaining tissue homeostasis. Asymmetric stem cell divisions depend on asymmetric cell architecture (i.e., cell polarity) within the cell and/or the cellular environment. In particular, as residents of the tissues they sustain, stem cells are inevitably placed in the context of the tissue architecture. Indeed, many stem cells are polarized within their microenvironment, or the stem cell niche, and their asymmetric division relies on their relationship with the microenvironment. Here, we review asymmetric stem cell divisions in the context of the stem cell niche with a focus on Drosophila germ line stem cells, where the nature of niche-dependent asymmetric stem cell division is well characterized.Asymmetric cell division allows stem cells to self-renew and produce another cell that undergoes differentiation, thus providing a simple method for tissue homeostasis. Stem cell self-renewal refers to the daughter(s) of stem cell division maintaining all stem cell characteristics, including proliferation capacity, maintenance of the undifferentiated state, and the capability to produce daughter cells that undergo differentiation. A failure to maintain the correct stem cell number has been speculated to lead to tumorigenesis/tissue hyperplasia via stem cell hyperproliferation or tissue degeneration/aging via a reduction in stem cell number or activity (Morrison and Kimble 2006; Rando 2006). This necessity changes during development. The stem cell pool requires expansion earlier in development, whereas maintenance is needed later to sustain tissue homeostasis.There are two major mechanisms to sustain a fixed number of adult stem cells: stem cell niche and asymmetric stem cell division, which are not mutually exclusive. Stem cell niche is a microenvironment in which stem cells reside, and provides essential signals required for stem cell identity (Fig. 1A). Physical limitation of niche “space” can therefore define stem cell number within a tissue. Within such a niche, many stem cells divide asymmetrically, giving rise to one stem cell and one differentiating cell, by placing one daughter inside and another outside of the niche, respectively (Fig. 1A). Nevertheless, some stem cells divide asymmetrically, apparently without the niche. For example, in Drosophila neuroblasts, cell-intrinsic fate determinants are polarized within a dividing cell, and subsequent partitioning of such fate determinants into daughter cells in an asymmetric manner results in asymmetric stem cell division (Fig. 1B) (see Fig. 3A and Prehoda 2009).Open in a separate windowFigure 1.Mechanisms of asymmetric stem cell division. (A) Asymmetric stem cell division by extrinsic fate determinants (i.e., the stem cell niche). The two daughters of stem cell division will be placed in distinct cellular environments either inside or outside the stem cell niche, leading to asymmetric fate choice. (B) Asymmetric stem cell division by intrinsic fate determinants. Fate determinants are polarized in the dividing stem cells, which are subsequently partitioned into two daughter cells unequally, thus making the division asymmetrical. Self-renewing (red line) and/or differentiation promoting (green line) factors may be involved.In this review, we focus primarily on asymmetric stem cell divisions in the Drosophila germ line as the most intensively studied examples of niche-dependent asymmetric stem cell division. We also discuss some examples of stem cell division outside Drosophila, where stem cells are known to divide asymmetrically or in a niche-dependent manner.  相似文献   

10.
Cell division is generally thought to be a process that produces an exact copy of the mother cell by precisely replicating its genomic DNA, doubling organelles, and segregating them into two cells. Many cell types from bacteria to human cells divide asymmetrically, however, to generate daughter cells with distinct characteristics. Such asymmetric divisions are fundamental to the lifespan of a cell, to embryonic development, and to stem cell homeostasis. Asymmetric division requires coordination of cellular asymmetry and the cell division machinery. Accumulating evidence suggests that the basic molecular mechanisms that govern this process are conserved from yeast to humans. In this review we highlight similarities in the mechanisms of asymmetric cell division in yeast and Drosophila male germline stem cells (GSCs) in the hope of extracting common themes underlying several systems.  相似文献   

11.
The cytokinetic cleavage furrow is typically positioned symmetrically relative to the cortical cell boundaries, but it can also be asymmetric. The mechanisms that control furrow site specification have been intensively studied, but how polar cortex movements influence ultimate furrow position remains poorly understood. We measured the position of the apical and the basal cortex in asymmetrically dividing Drosophila neuroblasts and observed preferential displacement of the apical cortex that becomes the larger daughter cell during anaphase, effectively shifting the cleavage furrow toward the smaller daughter cell. Asymmetric cortical extension is correlated with the presence of cortical myosin II, which is polarized in neuroblasts. Loss of myosin II asymmetry by perturbing heterotrimeric G-protein signaling results in symmetric extension and equal-sized daughter cells. We propose a model in which contraction-driven asymmetric polar extension of the neuroblast cortex during anaphase contributes to asymmetric furrow position and daughter cell size.  相似文献   

12.
Germline stem cells divide asymmetrically to produce one new daughter stem cell and one daughter cell that will subsequently undergo meiosis and differentiate to generate the mature gamete. The silent sister hypothesis proposes that in asymmetric divisions, the selective inheritance of sister chromatids carrying specific epigenetic marks between stem and daughter cells impacts cell fate. To facilitate this selective inheritance, the hypothesis specifically proposes that the centromeric region of each sister chromatid is distinct. In Drosophila germ line stem cells (GSCs), it has recently been shown that the centromeric histone CENP-A (called CID in flies)—the epigenetic determinant of centromere identity—is asymmetrically distributed between sister chromatids. In these cells, CID deposition occurs in G2 phase such that sister chromatids destined to end up in the stem cell harbour more CENP-A, assemble more kinetochore proteins and capture more spindle microtubules. These results suggest a potential mechanism of ‘mitotic drive’ that might bias chromosome segregation. Here we report that the inner kinetochore protein CENP-C, is required for the assembly of CID in G2 phase in GSCs. Moreover, CENP-C is required to maintain a normal asymmetric distribution of CID between stem and daughter cells. In addition, we find that CID is lost from centromeres in aged GSCs and that a reduction in CENP-C accelerates this loss. Finally, we show that CENP-C depletion in GSCs disrupts the balance of stem and daughter cells in the ovary, shifting GSCs toward a self-renewal tendency. Ultimately, we provide evidence that centromere assembly and maintenance via CENP-C is required to sustain asymmetric divisions in female Drosophila GSCs.  相似文献   

13.

Background

Drosophila female germline stem cells (GSCs) reside adjacent to a cellular niche that secretes Bone Morphogenetic Protein (BMP) ligands and anchors the GSCs through adherens junctions. The GSCs divide asymmetrically such that one daughter remains in the niche as a GSC, while the other is born away from the niche and differentiates. However, given that the BMP signal can be diffusible, it remains unclear how a local extracellular asymmetry is sufficient to result in a robust pattern of asymmetric division.

Methods and Findings

Here we show that GSCs are polarized with respect to the cellular niche. We first use a modified biosensor to demonstrate that the small GTPase Rac is asymmetrically activated within the GSC at the niche-GSC interface. Experiments using loss-of-function and gain-of-function mutations in Rac indicate that asymmetric Rac activity both localizes the microtubule binding protein Apc2 to orient one GSC centrosome at the niche-GSC interface during interphase and activates the Jun N-terminal kinase pathway to increase the ability of the GSC to respond to BMP ligands. Other processes act in concert with each function of Rac. Specifically, we demonstrate that the GSC cell cycle arrests at prometaphase if centrosomes are misoriented.

Conclusions

Thus, the GSCs, an adult stem cell present in a cellular niche, have a niche-associated polarity that couples control of the division plane with increased response to an extracellular maintenance signal. Other processes work in parallel with the Rac-mediated polarity to ensure a robust pattern of asymmetric division. We suggest that all adult stem cells likely employ multiple, independently acting mechanisms to ensure asymmetric division to maintain tissue homeostasis.  相似文献   

14.
15.
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.  相似文献   

16.
Asymmetric distribution of fate determinants is a fundamental mechanism underlying the acquisition of distinct cell fates during asymmetric division. In Drosophila neuroblasts, the apical DmPar6/DaPKC complex inhibits Lethal giant larvae (Lgl) to promote the basal localization of fate determinants. In contrast, in the sensory precursor (pI) cells that divide asymmetrically with a planar polarity, Lgl inhibits Notch signaling in the anterior pI daughter cell, pIIb, by a yet-unknown mechanism. We show here that Lgl promotes the cortical recruitment of Partner of Numb (Pon) and regulates the asymmetric distribution of the fate determinants Numb and Neuralized during the pI cell division. Analysis of Pon-GFP and Histone2B-mRFP distribution in two-color movies confirmed that Lgl regulates Pon localization. Moreover, posterior DaPKC restricts Lgl function to the anterior cortex at mitosis. Thus, Lgl functions similarly in neuroblasts and in pI cells. We also show that Lgl promotes the acquisition of the pIIb cell fate by inhibiting the plasma membrane localization of Sanpodo and thereby preventing the activation of Notch signaling in the anterior pI daughter cell. Thus, Lgl regulates cell fate by controlling Pon cortical localization, asymmetric localization of Numb and Neuralized, and plasma-membrane localization of Sandopo.  相似文献   

17.
A fertilised Caenorhabditis elegans embryo shows an invariable pattern of cell division and forms a multicellular body where each cell locates to a defined position. Mitotic spindle orientation is determined by several preceding events including the migration of duplicated centrosomes on a nucleus and the rotation of nuclear-centrosome complex. Cell polarity is the dominant force driving nuclear-centrosome rotation and setting the mitotic spindle axis in parallel with the polarity axis during asymmetric cell division. It is reasonable that there is no nuclear-centrosome rotation in symmetrically dividing blastomeres, but the mechanism(s) which suppress rotation in these cells have been proposed because the rotations occur in some polarity defect embryos. Here we show the nuclear-centrosome rotation can be induced by depletion of RPN-2, a regulatory subunit of the proteasome. In these embryos, cell polarity is established normally and both asymmetrically and symmetrically dividing cells are generated through asymmetric cell divisions. The nuclear-centrosome rotations occurred normally in the asymmetrically dividing cell lineage, but also induced in symmetrically dividing daughter cells. Interestingly, we identified RPN-2 as a binding protein of PKC-3, one of critical elements for establishing cell polarity during early asymmetric cell divisions. In addition to asymmetrically dividing cells, PKC-3 is also expressed in symmetrically dividing cells and a role to suppress nuclear-centrosome rotation has been anticipated. Our data suggest that the expression of RPN-2 is involved in the mechanism to suppress nuclear-centrosome rotation in symmetrically dividing cells and it may work in cooperation with PKC-3.  相似文献   

18.
Stem cells and neuroblasts derived from mouse embryos undergo repeated asymmetric cell divisions, generating neural lineage trees similar to those of invertebrates. In Drosophila, unequal distribution of Numb protein during mitosis produces asymmetric cell divisions and consequently diverse neural cell fates. We investigated whether a mouse homologue m-numb had a similar role during mouse cortical development. Progenitor cells isolated from the embryonic mouse cortex were followed as they underwent their next cell division in vitro. Numb distribution was predominantly asymmetric during asymmetric cell divisions yielding a beta-tubulin III(-) progenitor and a beta-tubulin III(+) neuronal cell (P/N divisions) and predominantly symmetric during divisions producing two neurons (N/N divisions). Cells from the numb knockout mouse underwent significantly fewer asymmetric P/N divisions compared to wild type, indicating a causal role for Numb. When progenitor cells derived from early (E10) cortex undergo P/N divisions, both daughters express the progenitor marker Nestin, indicating their immature state, and Numb segregates into the P or N daughter with similar frequency. In contrast, when progenitor cells derived from later E13 cortex (during active neurogenesis in vivo) undergo P/N divisions they produce a Nestin(+) progenitor and a Nestin(-) neuronal daughter, and Numb segregates preferentially into the neuronal daughter. Thus during mouse cortical neurogenesis, as in Drosophila neurogenesis, asymmetric segregation of Numb could inhibit Notch activity in one daughter to induce neuronal differentiation. At terminal divisions generating two neurons, Numb was symmetrically distributed in approximately 80% of pairs and asymmetrically in 20%. We found a significant association between Numb distribution and morphology: most sisters of neuron pairs with symmetric Numb were similar and most with asymmetric Numb were different. Developing cortical neurons with Numb had longer processes than those without. Numb is expressed by neuroblasts and stem cells and can be asymmetrically segregated by both. These data indicate Numb has an important role in generating asymmetric cell divisions and diverse cell fates during mouse cortical development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号