首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The combination of the Kit W mutation and Kit S allele from Mus spretus leads to male hybrid sterility. The effects of other combinations between Kit W and Kit M from Mus m. molossinus or Kit N from Mus m. musculus on male reproductive ability were examined in this study. The Kit W/Kit M and Kit W/Kit N males were fertile and showed the normal pattern of spermatogenesis in most seminiferous tubules. There were two amino acid substitutions in the protein deduced from the cDNA sequence coded by the Kit M allele sequence and three in the Kit M allele compared with the protein from the + Kit allele of C57BL mice. These amino acid exchanges had no effect on the fertility of Kit W/Kit M and Kit W/Kit N males. Therefore, comparing the sequence data from cDNA coded by Kit M and Kit N alleles with that for the Kit S allele, we concluded that one or more amino acid exchanges in the extracellular domain would be the cause of male hybrid sterility in the Kit W/Kit S combination; these substitutions are Phe to Ser at position 72, Thr to Ala at 95, Ser to Arg at 101, Leu to Pro at 123, and Ile to Met at 1303  相似文献   

2.
The combination of the KitW or KitW-n mutant alleles and KitS from Mus spretus results in male hybrid sterility with small testes. In the present study, reproduction of the combination between KitW-v and KitS alleles was examined. The KitW-v/KitS male was fertile and the histologic structure was normal; the seminiferous tubules showed all of the normal stages of spermatogenesis. The postnatal development of the testis at 8, 12, 16 and 20 days was also studied in the fertile +Kit/+Kit and KitW-v/KitS males and the sterile KitW/KitS. The results showed that at 8 days there was no noticeable difference among the three genotype combinations, while from 12 to 20 days spermatogenesis in the KitW/KitS male nearly stopped before the meiosis stage. The expression of Kit receptor protein from the KitS allele in the sterile testis of the KitW/KitS male was confirmed using western blot analysis. The Kit ligand derived from M. spretus showed two amino acid changes in the extracellular domain compared with that from C57BL and it appears that the ligand-receptor interaction between C57BL and SPR may influence the male hybrid sterility of KitW/KitS.  相似文献   

3.
The effect of mutation Kit W-Y found in C57BL/6 mice on fertility, spermatogenesis, and early embryogenesis of mice have been studied. If heterozygotes Kit W /+ are crossed with wild-type mice, fertility decreases by 20%. Homozygotes Kit W-Y /Kit W-Y and compounds Kit W-Y /Kit Ssm are nonviable. The study of spermatogenesis in Kit W /+ mice has demonstrated a negative effect of this mutation on spermatocytes. Histological examination of the testes of mutant males has shown local empty spaces in seminal ducts. Electron microscopic examination of synaptonemal complexes have demonstrated desynapsis disturbance in some nuclei at the diplotene stage of meiotic prophase I. However, these disturbances do not cause a decrease in the number of fertilized oocytes/ova. The decrease in fertility is accounted for disturbances of early embryogenesis. In vivo and in vitro analyses of early embryogenesis have demonstrated that cleavage divisions are asynchronous in Kit W-Y /+ heterozygous embryos. Some of these embryos die before implantation, and others cleave more rapidly than wild-type embryos, which give them selective advantage during the postimplantation period of embryogenesis. The pattern of Kit W-Y expression during spermatogenesis and embryogenesis mimics potential human pathology, which makes these mutants an interesting and valuable object for genetics and developmental biology.  相似文献   

4.
During mammalian spermatogenesis, many specific molecules show the dynamics of expression and elimination, corresponding with the morphological differentiation of germ cells. We have isolated a novel cDNA designated F77 from mouse testis by cDNA subtractive hybridization between normal and sterile mice, using the C57BL/6 congenic strain for the hybrid sterilityhyphen;3 lpar;Hsthyphen;3rpar; allele from Mus spretus. The full-length F77 mRNA was 3.4 kb and showed significant nonmatching with entries in the databases. F77 was mapped at a proximal position between D8Mit212 and D8Mit138 on mouse chromosome 8, in which no corresponding genes related to its nucleotide sequence were found. F77 mRNA was not detected in any other organs except the testis of adult fertile mice. F77 protein was only seen in normal adult testis and epididymis. In contrast to normal C57BL/6 mice, F77 mRNA and protein were not seen in germ cell-deficient Kit(W)/Kit(Wv) mice. By in situ hybridization, F77 mRNA was detected mainly at round spermatids in the sexually mature testis, and immunohistochemical analysis revealed that F77 protein was located at the tail of elongated spermatids. We are proposing the name, sperm-tail-associated protein (Stap), for the gene encoding F77 cDNA. Mol. Reprod. Dev. 59: 350-358, 2001.  相似文献   

5.
Sex determination in the mammalian embryo begins with the activation of a gene on the Y chromosome which triggers a cascade of events that lead to male development. The mechanism by which this gene, designated SRY in humans and Sry in mice (sex determining region of the Y chromosome), is activated remains unknown. Likewise, the downstream target genes for Sry remain unidentified at present. C57BL mice carrying a Y chromosome from Mus musculus musculus or molossinus develop normally as males. In contrast, C57BL/6 mice with the Y chromosome from M. m. domesticus often show sex reversal, i.e., develop as XY females. It has been documented that C57BL mice with the Y chromosome from Poschiavinus (YPOS), a domesticus subtype, always develop as females or hermaphrodites. This suggests that a C57BL gene either up- or downstream of Sry is ineffective in interacting with Sry, which then compromises the processes that lead to normal male sex development. Nonetheless, by selective breeding, we have been able to generate a sex reversal-resistant C57BL/6-congenic strain of mice in which the XYPOS individuals consistently develop as normal males with bilateral testes. Because the resistance to sex reversal was transferred from strain 129S1/Sv (nonalbino) by simple selection over 13 backcross generations, it is inferred that a single autosomal gene or chromosomal region confers resistance to the sex reversal that would otherwise result. XYPOS normal males generated in these crosses were compared to XYPOS abnormal individuals and to C57BL/6 controls for sexual phenotype, gonadal weight, serum testosterone, and major urinary protein (MUP) level. A clear correlation was found among phenotypic sex, MUP level, and testis weight in the males and in the incompletely masculinized XYPOS mice. The fully masculinized males of the congenic strain resemble C57BL/6 males in the tested parameters. DNA analysis confirmed that these males, in fact, carry the YPOS Sry gene.  相似文献   

6.
A hybrid congenic strain, C57BL/6J.SPRET-Hprt a , carrying 17 map units of Chromosome (Chr) X from Mus spretus on a background of C57BL/6J, has the novel phenotype of low fertility associated with small testis weight. In histological cross-section, many of the tubules in the testes of these congenic mice are empty except for Sertoli cells, while the other tubules appear to be normal. The gene, interspecific hybrid testis weight 1 (Ihtw1) causing this phenotype, has been fine mapped by using the strategy of generating subcongenic strains from recombinants within the congenic region. Genetic and phenotypic analysis of the subcongenic strains has defined a critical region of 1.8 map units for Ihtw1. This region of the genetic map is orthologous to the region on human Chr X containing the gene for the Borjeson-Forssman-Lehman syndrome, an inherited disease in which males show microorchidism. Received: 12 June 2000 / Accepted: 8 September 2000  相似文献   

7.
Characterization of the pleiotropic effects of ten new putative W locus mutations, nine co-isogenic and one highly congenic with the C57BL/6J strain, reveals a wide variety of influences upon pigmentation, blood formation and gametogenesis. None of the putative alleles, each of which is closely linked to Ph, a gene 0.1 cM from W, gave evidence of complementation with W39, a new allele previously shown to be allelic to Wv. All W*/W39 genotypes resulted in black-eyed-white anemics with reduced gametogenic activity.1 Homozygotes for seven of these mutations are lethal during perinatal life; anemic embryos have been identified in litters produced by intercross matings involving each of these alleles.—Phenotypes of mice of several mutant genotypes provide exceptions to the frequent observation that a double dose of dominant W alleles (e.g., W/Wv or W/W) results in defects of corresponding severity in each of the three affected tissues. One viable homozygote has little or no defect in blood formation, and another appears to have normal fertility. The phenotypes of these homozygotes support the conclusion that the three tissue defects are not dependent on each other for their appearance and probably do not result from a single physiological disturbance during the development of the embryo.—Although homozygosity for members of this series results in a wide range of phenotypes, the absence of complementation of any allele with W39, the close proximity of each mutant to Ph, and the fact that all alleles produce detectable (though sometimes marginal) defects in the same tissues affected by W and Wv, support the hypothesis that each new mutant gene is a W allele.  相似文献   

8.
We investigated the molecular basis for the remarkably different survival outcomes of mice expressing different alloforms of the pro-apoptotic serine protease granzyme B to mouse cytomegalovirus infection. Whereas C57BL/6 mice homozygous for granzyme BP (GzmBP/P) raise cytotoxic T lymphocytes that efficiently kill infected cells, those of C57BL/6 mice congenic for the outbred allele (GzmBW/W) fail to kill MCMV-infected cells and died from uncontrolled hepatocyte infection and acute liver failure. We identified subtle differences in how GzmBP and GzmBW activate cell death signalling - both alloforms predominantly activated pro-caspases directly, and cleaved pro-apoptotic Bid poorly. Consequently, neither alloform initiated mitochondrial outer membrane permeabilization, or was blocked by Bcl-2, Bcl-XL or co-expression of MCMV proteins M38.5/M41.1, which together stabilize mitochondria by sequestering Bak/Bax. Remarkably, mass spectrometric analysis of proteins from MCMV-infected primary mouse embryonic fibroblasts identified 13 cleavage sites in nine viral proteins (M18, M25, M28, M45, M80, M98, M102, M155, M164) that were cleaved >20-fold more efficiently by either GzmBP or GzmBW. Notably, M18, M28, M45, M80, M98, M102 and M164 were cleaved 20- >100-fold more efficiently by GzmBW, and so, would persist in infected cells targeted by CTLs from GzmBP/P mice. Conversely, M155 was cleaved >100-fold more efficiently by GzmBP, and would persist in cells targeted by CTLs of GzmBW/W mice. M25 was cleaved efficiently by both proteases, but at different sites. We conclude that different susceptibility to MCMV does not result from skewed endogenous cell death pathways, but rather, to as yet uncharacterised MCMV-intrinsic pathways that ultimately inhibit granzyme B-induced cell death.  相似文献   

9.
The hybrid sterility-1 (Hst1) locus at Chr 17 causes male sterility in crosses between the house mouse subspecies Mus musculus domesticus (Mmd) and M. m. musculus (Mmm). This locus has been defined by its polymorphic variants in two laboratory strains (Mmd genome) when mated to PWD/Ph mice (Mmm genome): C57BL/10 (carrying the sterile allele) and C3H (fertile allele). The occurrence of sterile and/or fertile (wild Mmm × C57BL)F1 males is evidence that polymorphism for this trait also exists in natural populations of Mmm; however, the nature of this polymorphism remains unclear. Therefore, we derived two wild-origin Mmm strains, STUS and STUF, that produce sterile and fertile males, respectively, in crosses with C57BL mice. To determine the genetic basis underlying male fertility, the (STUS × STUF)F1 females were mated to C57BL/10 J males. About one-third of resulting hybrid males (33.8%) had a significantly smaller epididymis and testes than parental animals and lacked spermatozoa due to meiotic arrest. A further one-fifth of males (20.3%) also had anomalous reproductive traits but produced some spermatozoa. The remaining fertile males (45.9%) displayed no deviation from values found in parental individuals. QTL analysis of the progeny revealed strong associations of male fitness components with the proximal end of Chr 17, and a significant effect of the central section of Chr X on testes mass. The data suggest that genetic incompatibilities associated with male sterility have evolved independently at the proximal end of Chr 17 and are polymorphic within both Mmd and Mmm genomes.  相似文献   

10.
The level of circulating Interferon induced in mice by Newcastle disease virus is controlled by a single codominant locus,If-1, with two alleles,If-1 l for low andIf-1 h for high production. This locus is linked to the histocompatibility locusH-28. Of three C57BL/6By lines congenic for the BALB/cBy allele atH-28, two are carrying the BALB/cBy allele and one, the C57BL/6By allele atIf-1. Thus, mouse strains that are genetically very similar but different in their production of NDV-induced circulating Interferon now are available.A preliminary report of these studies was presented at the ASM meeting at Miami Beach in May 1973.  相似文献   

11.
Extracellular superoxide dismutase (ecSOD) protects the extracellular matrix from oxidative stress. We previously reported a new allele for ecSOD, expressed in 129P3/J mice (129), which differs from the wild type (wt), expressed in C57BL/6J and other strains, by two amino acid substitutions and a 10-bp deletion in the 3′ UTR of the mRNA (A. Pierce et al., 2003, Arterioscler. Thromb. Vasc. Biol. 23:1820–1825). The newly discovered allele is associated with a phenotype of significantly increased circulating and heparin-releasable enzyme activities and levels. To examine the properties of the two forms of ecSOD in an identical environment we generated, by extensive backcrossing of ecSOD heterozygous progeny to C57BL/6J females, a congenic C57 strain with the 129 (or wt) allele of ecSOD. These mice are homozygous for nearly 5000 SNPs across all chromosomes, as determined by the Affymetrix Parallele Mouse 5K SNP panel. This study describes the generation of the congenic mice (genetically > 99.8% identical) and their ecSOD phenotype. The congenic mouse plasma ecSOD activity before and after heparin administration recapitulates the differences reported in the founder mice. Tissue enzyme distribution is similar in both congenic groups, although the 129 allele is associated with higher levels of enzyme expression despite lower levels of enzyme mRNA. In these characteristics the phenotype is allele driven, with little impact from the rest of the genome. The congenic mice carrying the 129 allele have mRNA levels that are in between those in the founder 129P3/J and C57BL/6J strains. We conclude that the ecSOD phenotype in most aspects of enzyme expression is allele driven, with the exception of tissue mRNA levels, for which a significant contribution by the surrounding (host) genome is observed. These results also suggest potential allele-specific differences in the regulation of ecSOD synthesis and intracellular processing/secretion of ecSOD, independent of the genotype context. Most importantly, the congenic mice offer an excellent model to examine the regulatory mechanisms of ecSOD expression and the role of ecSOD in various diseases involving oxidative stress.  相似文献   

12.
When hematopoietic cells of congenic +/+ mice were injected into the skin of genetically mast-cell-depleted (WB × C57BL/6)F1-W/Wv mice, mast cells appeared at the injection site. The donor origin of developing mast cells was confirmed by using granules of C57BL/6-bgl/bgl mice as a marker. When the number of injected cells was decreased, the proportion of injection sites at which mast cells did not appear increased according to the expected frequency of null response in a Poisson distribution. Therefore, such proportions were used to calculate the concentration of mast-cell precursors in the bone marrow, spleen, and peripheral blood. The relative concentration of mast-cell precursors in these tissues was similar to that of spleen-colony-forming cells. The present method seems useful as a semiquantitative in vivo assay for a population of progenitor cells which are committed to differentiate into mast cells.  相似文献   

13.
Genetic mutations could cause sperm deficiency, leading to male infertility. Without functional gametes in the testes, patients cannot produce progeny even with assisted reproduction technologies such as in vitro fertilization. It has been a major challenge to restore the fertility of gamete-deficient patients due to genetic mutations. In this study, using a Kitw/Kitwv mouse model, we investigated the feasibility of generating functional sperms from gamete-deficient mice by combining the reprogramming and gene correcting technologies. We derived embryonic stem cells from cloned embryos (ntESCs) that were created by nuclear transfer of Kitw/Kitwv somatic cells. Then we generated gene-corrected ntESCs using TALEN-mediated gene editing. The repaired ntESCs could further differentiate into primordial germ cell-like cells (PGCLCs) in vitro. RFP-labeled PGCLCs from the repaired ntESCs could produce functional sperms in mouse testes. In addition, by co-transplantation with EGFP-labeled testis somatic cells into the testes where spermatogenesis has been chemically damaged or by transplantation into Kitw/Kitwv infertile testes, non-labeled PGCLCs could also produce haploid gametes, supporting full-term mouse development. Our study explores a new path to rescue male infertility caused by genetic mutations.  相似文献   

14.
Male F1 hybrids between inbred strains and Mus macedonicus have very small testes and are sterile. Cytological analysis of testes shows very few meioses. To determine the genetic basis for this sterility, (C57BL/6J × Mus macedonics) F1 females were mated to males from C57BL/10J. In about half the male progeny no meiosis I was observed. About half of the animals that progressed through meiosis I showed other indications of low fertility and the balance appeared fertile. QTL analysis of the progeny suggested that loci on proximal Chrs 17 and X were involved in the sterility and a locus on Chr X in variation of body weight. There is also evidence that X//Y dissociation of the pseudo-autosomal region occurs. The QTLs on Chrs X and 17 together account for about 37% of the variance for testis weight. Congenic lines B.MAC-X(1-38), and B.MAC-17(1-23) have been constructed using a modified speed congenic approach. Testis tubules from B.MAC-X(1-38) are narrow and vacuolated. They contain only Sertoli cells and mitotically dividing spermatogonia. Very occasionally a meiotic metaphase can be observed, but no sperm are produced. Homozygous males from B.MAC-17(1-23) are sterile, producing sperm heads but no complete sperm.  相似文献   

15.

Background

Clinical studies showed the contribution of viral infection to the development of asthma. Although mast cells have multiple roles in the pathogenesis of allergic asthma, their role of in the virus-associated pathogenesis of asthma remains unknown. Most respiratory viruses generate double-stranded (ds) RNA during their replication. dsRNA provokes innate immune responses. We recently showed that an administration of polyinocinic polycytidilic acid (poly IC), a mimetic of viral dsRNA, during allergen sensitization augments airway eosinophilia and hyperresponsiveness in mice via enhanced production of IL-13.

Methods

The effect of poly IC on allergen-induced airway eosinophilia was investigated for mast cell-conserved Kit+/+ mice and -deficient KitW/KitW-v mice. The outcome of mast cell reconstitution was further investigated.

Results

Airway eosinophilia and IL-13 production were augmented by poly IC in Kit+/+ mice but not in KitW/KitW-v mice. When KitW/KitW-v mice were reconstituted with bone marrow-derived mast cells (BMMCs), the augmentation was restored. The augmentation was not induced in the mice systemically deficient for TIR domain-containing adaptor-inducing IFN-β (TRIF) or interferon regulatory factor (IRF)-3, both mediate dsRNA-triggered innate immune responses. The augmentation was, however, restored in KitW/KitW-v mice reconstituted with TRIF-deficient or IRF-3-deficient BMMCs. Although leukotriene B4 and prostaglandin D2 are major lipid mediators released from activated mast cells, no their contribution was shown to the dsRNA-induced augmentation of airway eosinophilia.

Conclusions

We conclude that mast cells contribute to dsRNA-induced augmentation of allergic airway inflammation without requiring direct activation of mast cells with dsRNA or involvement of leukotriene B4 or prostaglandin D2.  相似文献   

16.

Background

The Natural Killer Complex (NKC) is a genetic region of highly linked genes encoding several receptors involved in the control of NK cell function. The NKC is highly polymorphic and allelic variability of various NKC loci has been demonstrated in inbred mice, providing evidence for NKC haplotypes. Using BALB.B6-Cmv1r congenic mice, in which NKC genes from C57BL/6 mice were introduced into the BALB/c background, we have previously shown that the NKC is a genetic determinant of malarial pathogenesis. C57BL/6 alleles are associated with increased disease-susceptibility as BALB.B6-Cmv1r congenic mice had increased cerebral pathology and death rates during P. berghei ANKA infection than cerebral malaria-resistant BALB/c controls.

Methods

To investigate which regions of the NKC are involved in susceptibility to experimental cerebral malaria (ECM), intra-NKC congenic mice generated by backcrossing recombinant F2 progeny from a (BALB/c x BALB.B6-Cmv1r) F1 intercross to BALB/c mice were infected with P. berghei ANKA.

Results

Our results revealed that C57BL/6 alleles at two locations in the NKC contribute to the development of ECM. The increased severity to severe disease in intra-NKC congenic mice was not associated with higher parasite burdens but correlated with a significantly enhanced systemic IFN-γ response to infection and an increased recruitment of CD8+ T cells to the brain of infected animals.

Conclusions

Polymorphisms within the NKC modulate malarial pathogenesis and acquired immune responses to infection.  相似文献   

17.
18.
Previous QTL studies have identified 24 QTLs for body weight and growth from 3 to 10 weeks after birth in an intersubspecific backcross mouse population between C57BL/6J and wild Mus musculus castaneus that has 60% of the body size of C57BL/6J. The castaneus allele at the most potent QTL (Pbwg1) on proximal chromosome 2 retards growth. In this study we have developed a congenic strain with a 44.1-Mb interval containing the castaneus allele at Pbwg1 by recurrent backcrossing to C57BL/6J. The congenic mouse developed was characterized by significantly higher body weight gain between 1 and 3 weeks of age and lower weight of white fat pads at 10 weeks of age than C57BL/6J. However, no clear difference in body weight at 1–10 weeks of age was observed between congenic and C57BL/6J strains. QTL analysis with 269 F2 mice between the two strains did not identify any QTLs for body weight at 1, 3, 6, and 10 weeks of age, but it discovered eight closely linked QTLs affecting body weight gain from 1 to 3 weeks of age, lean body weight, weight of white fat pads, and body length within the Pbwg1 region. The castaneus alleles at all fat pad QTLs reduced the phenotypes, whereas at the remaining growth and body composition QTLs, they increased the trait values. These results illustrate that Pbwg1, which initially appeared to be a single locus, was resolved into several loci with opposite effects on the composition traits of overall body weight. This gives a reason for the loss of the Pbwg1 effect found in the original backcross population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We have previously reported suggestive evidence for a locus on Chromosome (Chr) 7 that affects adiposity in F2 mice from a CAST/Ei × C57BL/6J intercross fed a high-fat diet. Here we characterize the effect of a high-fat (32.6 Kcal% fat) diet on male and female congenic mice with a C57BL/6J background and a CAST/Ei-derived segment on Chr 7. Adiposity index (AI) and weights of certain fat pads were approximately 50% lower in both male and female congenic mice than in control C57BL/6J mice, and carcass fat content was significantly reduced. The reduction of fat depot weights was not seen, however, in congenic animals fed a low-fat chow diet (12 Kcal% fat). The congenic segment is approximately 25 cM in length, extending from D7Mit213 to D7Mit41, and includes the tub, Ucp2, and Ucp3, genes, all of which are candidate genes for this effect. Some polymorphisms have been found on comparing c-DNA sequences of the Ucp2 gene from C57BL/6J and CAST/Ei mice. These results suggest that one or more genes present in the congenic segment modulate the susceptibility to fat deposition on feeding a high-fat diet. We were unable to show any significant difference between the energy intakes of the congenic and the control C57BL/6J mice on the high-fat diet. Also, measurements of energy expenditure in male mice at 6 weeks of age, during the first 2 weeks of exposure to the high-fat diet, failed to show any differences between control and congenic animals. Received: 30 September 1998 / Accepted: 22 December 1998  相似文献   

20.
T and B mouse spleen lymphocytes were separated by density gradient electrophoresis on the basis of their surface charge. In all strains examined, the T lymphocytes were found in the high mobility fractions and the B in the low. The T and B cells were separated completely in most fractions, with some overlapping in the middle. Significant differences were found in the electrophoretic distribution profiles between the strains: C57BL/6j, C57BL/10j, (BALB/cXC57BL/6j)F1, and all the following: B6·C-H-2d/cBy (congenic to C57BL/6j), BALB/c, CBA/H/T6j, C57BL/10Sn, and C3H. The C57BL/6j and the (BALB/cXC57BL/6j)F1 cells appear more heterogeneous as far as electrophoretic mobility is concerned. Almost all the other strains give two major peaks. Moreover, the high mobility areas are less populated in the C57BL/6j and the (BALB/cXC57BL/6j)F1 animals than in all the others. The above differences were found consistently when cells prepared by different methods were electrophoresed. It is concluded that the surface charge of lymphocytes may be genetically determined. Possible dependency on the H-2 complex or non-H-2 areas is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号