首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioavailability and bone loss inhibitory effects of vitamin D2 derived from UV-irradiated shiitake mushroom were determined in vivo. The effect of the absence of ovaries on the bioavailability of vitamin D2 and bone structure was also investigated. Sham operated (sham) and ovariectomized (OVX) rats were divided in 3 groups according to their diets, i.e. control: only vitamin D-deficient diets; UV(X): vitamin D-deficient diets with non-irradiated mushroom powder; UV(O): vitamin D-deficient diets with irradiated mushroom powder. The obtained results showed that vitamin D2 from shiitake mushroom was able to increase bone mineral density and trabecular bone structure of femur bone as well as its bioavailability. The absence of estrogen induced adverse effects not only on bioavailability of vitamin D2 but also on trabecular bone. In conclusion, vitamin D2-fortified shiitake mushroom might help postmenopausal women increase vitamin D2 bioavailability and retard trabecular bone loss.

Abbreviations: OVX: ovariectomized; 25(OH)D: 25-hydroxyvitamin D; 1,25(OH)2D: 1,25-dihydroxyvitamin D; BMD: bone mineral density; micro-CT: micro computed tomography; RSM: response surface methodology; RP-HPLC: Reverse phase-high performance liquid chromatography; MS/MS: tandem mass spectrometry; E2: estradiol; NTx: N-terminal telopeptide of type I collagen; BV/TV: bone volume/total volume; BS/BV: bone surface/bone volume; Tb.Th: trabecular thickness; Tb.Sp: trabecular separation.  相似文献   


2.
1α,25-Dihydroxy-2β-(3-hydroxypropoxy)vitamin D3 (ED-71), an analog of active vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], possesses a hydroxypropoxy substituent at the 2β-position of 1,25(OH)2D3. ED-71 has potent biological effects on bone and is currently under phase III clinical studies for bone fracture prevention. It is well-known that the synthesis and secretion of parathyroid hormone (PTH) is regulated by 1,25(OH)2D3. Interestingly, during clinical development of ED-71, serum intact PTH in osteoporotic patients did not change significantly upon treatment with ED-71. The reason remains unclear, however. Brown et al. reported that 3-epi-1,25(OH)2D3, an epimer of 1,25(OH)2D3 at the 3-position, shows equipotent and prolonged activity compared to 1,25(OH)2D3 at suppressing PTH secretion. Since ED-71 has a bulky hydroxypropoxy substituent at the 2-position, epimerization at the adjacent and sterically hindered 3-position might be prevented, which may account for its weak potency in PTH suppression observed in clinical studies. We have significant interest in ED-71 epimerization at the 3-position and the biological potency of 3-epi-ED-71 in suppressing PTH secretion. In the present studies, synthesis of 3-epi-ED-71 and investigations of in vitro suppression of PTH using bovine parathyroid cells are described. The inhibitory potency of vitamin D3 analogs were found to be 1,25(OH)2D3 > ED-71 ≥ 3-epi-1,25(OH)2D3  3-epi-ED-71. ED-71 and 3-epi-ED-71 showed weak activity towards PTH suppression in our assays.  相似文献   

3.
The economy of Ca utilization is under the control of vitamin D3, particularly its active metabolite 1,25-dihydroxy cholecalciferol [1,25(OH)2D3]. In sufficient Ca absorption leads to tibial dyschondroplasia resulting in not attaining optimum body weight. Our earlier studies [T.P. Prema, N. Raghuramulu, Phytochemistry 37 (1994) 167] have shown that the Cestrum diurnum (CD) leaves contain vitamin D3 metabolites. It was felt whether incorporation of CD as a source of 1,25(OH)2D3 could improve the Ca absorption in broilers. Four groups of 60 birds each were fed with either normal diet or normal diet + 0.25% CD or normal diet without vitamin D3 or normal diet without vitamin D3 + 0.25% CD leaf powder for 45 days. In subsample of six birds it was observed that incorporation of CD leaves in the feed had the maximal effect on all the parameters studied. The results indicate that the intestinal Ca transport as represented by Serosa/Mucosa (S/M) ratio was found to be significantly (p < 0.01) higher in broilers fed diet with CD leaf powder and the 1α hydroxylase activity in kidney is significantly (p < 0.001) higher in negative controls. On the other hand the supplementation of CD leaves enhanced the serum Ca, body weight, tibia weight, density and strength resulting in the disappearance of tibial dyschondroplasia. No lesions of toxicity were observed in any of the soft tissue examined. The results suggest that the incorporation of CD leaf powder in poultry feed could be beneficial to the poultry.  相似文献   

4.
We investigated the occurrence of rickets in adolescent tamarins (Saguinus imperator) residing at the Los Angeles Zoo. Compared to tamarins in the same colony without clinical evidence of bone disease (N = 6), rachitic platyrrhines (N = 3) had a decrease in their serum calcium concentration (P < .05). The affected tamarins also had lower serum 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) levels than did nonaffected colony mates, but 2–10-fold higher concentrations than in Old World primates of a comparable developmental stage. New World primates in many different genera are known to exhibit target organ resistance to the active vitamin D3 metabolite, 1,25-(OH)2D3, compensated by maintenance of high circulating concentrations of 1,25-(OH)2D3. The relatively low serum 1,25-(OH)2D3 concentration in rachitic tamarins and ultraviolet B radiation deficient environment of these primates suggested that bone disease may be linked to a deficiency in substrate for 1,25-(OH)2D3, 25 hydroxyvtamin D3 (25-OHD3). Chronic exposure of platyrrhines in three different vitamin D resistant genera to an artificial UVB source resulted in 1) a significant increase in the mean serum 25-OHD3 (P < .001) and 1,25-(OH)2D3 (P < .02) level over that encountered in platyrrhines not exposed to UVB; and 2) prevention of rachitic bone disease in irradiated individuals. These data further show that the serum 25-OHD3 and 1,25-OH2D3 levels are positively correlated in vitamin D-resistant platyrrhines (r = 0.64; P= .0014) and suggest that a compromise in cutaneous vitamin D3 production by means of UVB deprivation may limit necessary 1,25-(OH)2D3 production. © 1992 Wiley-Liss, Inc.  相似文献   

5.
We studied the effect of bone morphogenetic protein-2 (BMP-2) and vitamin D3 on the osteogenic differentiation of adipose stem cells (ASCs). ASCs were treated with 10, 50, and 100 ng/ml of BMP-2, and 10−8, 10−7, 10−6 M vitamin D3. Then, to investigate the effects of combined treatment, ASCs were treated with BMP-2 and vitamin D3 dose-dependently and time-dependently. The osteogenic differentiation was assessed by alkaline phosphatase (ALP) activities/staining and the mineralization was evaluated by Alizarin red S staining. ALP activity and mineralization dose-dependently increased in early stages (ALP on 7th day and mineralization on the 14th day) while all three doses of BMP-2 or vitamin D3 showed comparable effects in late stages (ALP on the 14th day and mineralization on the 21st day) in ASCs. BMP-2 and vitamin D3 had synergistic effect on the osteogenic differentiation of ASCs. While all three doses of BMP-2 acted similarly in reinforcing the effect of vitamin D3, vitamin D3 dose-dependently augmented the osteogenic effect of BMP-2. When BMP-2 was constantly treated, vitamin D3 effect did not differ depending on the period of vitamin D3 treatment. However, when vitamin D3 was constantly treated, the BMP was more effective when treated for the last 7 days than when treated for the first 7 days. In conclusion, BMP-2 and vitamin D3 promote osteogenic differentiation of ASCs, and can work synergistically. These results can be used to induce effective and economical osteogenic induction of ASCs for bone tissue engineering.  相似文献   

6.
Construction of 25-hydroxy-steroidal side chain substituted with iodine at C-22 was elaborated on a model PTAD-protected steroidal 5,7-diene and applied to a synthesis of (22R)- and (22S)-22-iodo-1α,25-dihydroxyvitamin D3. Configuration at C-22 in the iodinated vitamins, obtained by nucleophilic substitution of the corresponding 22S-tosylates with sodium iodide, was determined by comparison of their iodine-displacement processes and cyclizations leading to isomeric five-membered (22,25)-epoxy-1α-hydroxyvitamin D3 compounds. Also, 20(22)-dehydrosteroids have been obtained and their structures established by 1H NMR spectroscopy. When compared to the natural hormone, (E)-20(22)-dehydro-1α,25-dihydroxyvitamin D3 was found 4 times less potent in binding to the porcine intestinal vitamin D receptor (VDR) and 2 times less effective in differentiation of HL-60 cells. 22-Iodinated vitamin D analogues showed somewhat lower in vitro activity, whereas (22,25)-epoxy analogues were inactive. Interestingly, it was established that (22S)-22-iodo-1α,25-dihydroxyvitamin D3 was 3 times more potent than its (22R)-isomer in binding to VDR and four times more effective in HL-60 cell differentiation assay. The restricted mobility of the side chain of both 22-iodinated vitamin D compounds was analyzed by a systematic conformational search indicating different spatial regions occupied by their 25-oxygen atoms. Preliminary data on the in vivo calcemic activity of the synthesized vitamin D analogues indicate that (E)-20(22)-dehydro-1α,25-dihydroxyvitamin D3 and 22-iodo-1α,25-dihydroxyvitamin D3 isomers were ca. ten times less potent than the natural hormone 1α,25-(OH)2D3 both in intestinal calcium transport and bone calcium mobilization.  相似文献   

7.
BackgroundThe menopausal period is characterized by hormonal imbalance related to the alteration of parameters involved in lipid metabolism. In addition, menopause increases the risk of deficiencies of key vitamins and minerals such as vitamin D and zinc in such women. The present study investigates the influence of zinc supplementation on the status of vitamin D3 and other lipid parameters in postmenopausal women.MethodsFifty-one healthy postmenopausal women aged 44–76 years from the province of Granada (Spain) were divided into two groups (placebo and zinc) of 25 and 26 women, respectively. The zinc group was supplemented with 50 mg/day of zinc for 8 weeks. Nutrient intake assessment was performed by means of a 24 -h reminder. Zinc was determined by flame atomic absorption spectrophotometry. Vitamin D was analyzed by liquid chromatography - tandem mass spectrometry. Leptin was determined by enzyme immunoassay.ResultsZinc supplementation improved the initial vitamin D3 status of the postmenopausal population (p = 0.049). Plasma levels of 25−OH-D3 increased significantly after Zn supplementation in women with lower age at menopause (p = 0.045). Both intake and plasma zinc levels were inversely correlated to serum leptin levels (p = 0.044 and p = 0.033, respectively), being significantly lower in lower age at menopause (p < 0.001).ConclusionZinc supplementation improved vitamin D3 status and was associated to low leptin levels in the postmenopausal women of the study.  相似文献   

8.
The active metabolite of vitamin D such as 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin D3 metabolite, 1α,25(OH)2D3, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with 1α,25(OH)2D3 in the absence of differentiation-inducing factors. Treatment of HDPCs with 1α,25(OH)2D3 at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, 1α,25(OH)2D3 enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, 1α,25(OH)2D3 induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by 1α,25(OH)2D3. These results demonstrated that 1α,25(OH)2D3 promoted odontoblastic differentiation of HDPCs via modulating ERK activation.  相似文献   

9.
Of the various risk factors contributing to osteoporosis, dietary/lifestyle factors are important. In a clinical study we reported that women with caffeine intakes >300 mg/day had higher bone loss and women with vitamin D receptor (VDR) variant, tt were at a greater risk for this deleterious effect of caffeine. However, the mechanism of how caffeine effects bone metabolism is not clear. 1,25-Dihydroxy vitamin D3 (1,25(OH)2D3) plays a critical role in regulating bone metabolism. The receptor for 1,25(OH)2D3, VDR has been demonstrated in osteoblast cells and it belongs to the superfamily of nuclear hormone receptors. To understand the molecular mechanism of the role of caffeine in relation to bone, we tested the effect of caffeine on VDR expression and 1,25(OH)2D3 mediated actions in bone. We therefore examined the effect of different doses of caffeine (0.2, 0.5, 1.0 and 10 mM) on 1,25(OH)2D3 induced VDR protein expression in human osteoblast cells. We also tested the effect of different doses of caffeine on 1,25(OH)2D3 induced alkaline phosphatase (ALP) activity, a widely used marker of osteoblastic activity. Caffeine dose dependently decreased the 1,25(OH)2D3 induced VDR expression and at concentrations of 1 and 10 mM, VDR expression was decreased by about 50–70%, respectively. In addition, the 1,25(OH)2D3 induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)2D3 stimulated VDR protein expression and 1,25(OH)2D3 mediated actions in human osteoblast cells.  相似文献   

10.
Vitamin D is synthesised by ultraviolet (UV) irradiation of skin and is hypothesized to be a direct mediator of the immunosuppression that occurs following UV radiation (UVR) exposure. Both UVR and vitamin D drive immune responses towards tolerance by ultimately increasing the suppressive activities of regulatory T cells. To examine a role for UVR-induced vitamin D, vitamin D3-deficient mice were established by dietary vitamin D3 restriction. In comparison to vitamin D3-replete mice, vitamin D3-deficient mice had significantly reduced serum levels of 25-hydroxyvitamin D3 (25(OH)D3, <20 nmol.L−1) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, <20 pmol.L−1). Following either acute erythemal UVR, or chronic sub-erythemal UVR (8 exposures over 4 weeks) treatment, serum 25(OH)D3 levels significantly increased in vitamin D3-deficient female but not male mice. To determine if UVR-induced vitamin D was a mediator of UVR-induced systemic immunosuppression, responses were measured in mice that were able (female) or unable (male) to increase systemic levels of 25(OH)D3 after UVR. Erythemal UVR (≥4 kJ/m2) suppressed contact hypersensitivity responses (T helper type-1 or -17), aspects of allergic airway disease (T helper type-2) and also the in vivo priming capacity of bone marrow-derived dendritic cells to a similar degree in female and male vitamin D3-deficient mice. Thus, in male mice, UVR-induced 25(OH)D3 is not essential for mediating the immunosuppressive effects of erythemal UVR.  相似文献   

11.
Designed sockets prepared on the mandibles of nine Beagle dogs were divided into three groups: Calcitriol +Alloplast, Alloplast and Empty. Five of the nine dogs received Vit.D3 and calcium supplement (Vit.D/Ca group), while the other four dogs without supplements were assigned to Non‐Vit.D/Ca group. After 4 weeks, the extent of vertical ridge resorption (VRR), bone density (density), new bone formation (NBF) and implant stability quotient (ISQ) were measured. Following systemic Vit.D/Ca administration, the Empty subgroup showed significant differences from the Calcitriol + Alloplast subgroup on variants NBF/Density/VRR and the Alloplast subgroup on items NBF/Density/ISQ/VRR. Alternatively, the Calcitriol + Alloplast subgroup revealed higher values of NBF/Density/ISQ (P < 0.001) and a lower VRR value (P = 0.001) than the Alloplast subgroup. Although there were no significant differences in NBF (P = 0.349), density (P = 0.796), ISQ (P = 0.577) and VRR (0.979) comparisons on alloplast treatment between the Vit.D/Ca and Non‐Vit.D/Ca groups, local application with Calcitriol + Alloplast demonstrated better NBF/Density/ISQ (P = 0.02 to <0.001) effects than which of Alloplast subgroups. Consequently, the results showed that both systemic and local vitamin D3 treatment might accelerate bone regeneration in dogs. Within the using dose, systemic vitamin D3 treatment displayed a superior stimulating effect than local vitamin D3 application did.  相似文献   

12.
The extensive use of depleted uranium (DU) in today's society results in the increase of the number of human population exposed to this radionuclide. The aim of this work was to investigate in vivo the effects of a chronic exposure to DU on vitamin D3 metabolism, a hormone essential in mineral and bone homeostasis. The experiments were carried out in rats after a chronic contamination for 9 months by DU through drinking water at 40 mg/L (1 mg/rat/day). This dose corresponds to the double of highest concentration found naturally in Finland. In DU-exposed rats, the active vitamin D (1,25(OH)2D3) plasma level was significantly decreased. In kidney, a decreased gene expression was observed for cyp24a1, as well as for vdr and rxrα, the principal regulators of CYP24A1. Similarly, mRNA levels of vitamin D target genes ecac1, cabp-d28k and ncx-1, involved in renal calcium transport were decreased in kidney. In the brain lower levels of messengers were observed for cyp27a1 as well as for lxrβ, involved in its regulation. In conclusion, this study showed for the first time that DU affects both the vitamin D active form (1,25(OH)2D3) level and the vitamin D receptor expression, and consequently could modulate the expression of cyp24a1 and vitamin D target genes involved in calcium homeostasis.  相似文献   

13.
In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH)2D3 traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH)2D3 called 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D3-MARRS expression modulates 1,25(OH)2D3 activity in breast cancer cells.Relative levels of 1,25D3-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D3-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH)2D3 in MCF-7 cells, a ribozyme construct designed to knock down 1,25D3-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D3-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH)2D3 ( IC50 56 ± 24 nM) compared to controls (319 ± 181 nM; P < 0.05). Reduction in 1,25D3-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH)2D3. Knockdown of 1,25D3-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D3-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH)2D3 in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D3-MARRS expression or activity as anticancer agents.  相似文献   

14.
15.
It has been reported from this laboratory that prenatal cocaine exposure results in the postnatal transient alterations of rat striatal dopamine uptake sites examined from postnatal 0–32 wk. The present study aims to examine whether this will result in a direct/indirect stimulation of dopamine D2 receptors. Pregnant rats were dosed orally with cocaine hydrochloride (60 mg/kg/d) from gestational day (GD) 7–21. Control animals received an equivalent volume of water. The striatum from the offspring at postnatal 0–32 wk was examined. The radioligand [3H]sulpiride was used for the Scatchard analysis of the D2 receptors, and the changes in the levels of mRNA for the D2 receptor were studied using Northern blot analysis. Results from the present study revealed that in the control group, there was an age-dependent increase in the number of D2 receptor sites (B max:44.00±2.12 to 178.00±45.10 fmol/mg protein) and in the levels of D2 mRNA from PN0–32 wk with the most rapid increase occurring during the first 4 wk of postnatal development. Prenatal cocaine exposure resulted in only a significant decrease (p<0.001) in the number of D2 receptor sites at PN0 wk and in a 10% increase in mRNA levels at PN3, 4, and 12 wk. It was concluded from this study that prenatal cocaine exposure resulted in minimal postnatal changes in the dopamine D2 receptor.  相似文献   

16.
The biological activity of 24,24-difluoro-25-hydroxyvitamin D3 was assessed using elevation of serum phosphorus and healing of rickets of vitamin D-deficient rats. Various levels of 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 were administered daily for 2 weeks in the dose range of 6.5 to 3250 pmol after feeding rats a low phosphorus, vitamin D-deficient diet for 3 weeks. Vitamin D3 was concurrently tested at dose levels of 650 and 3250 pmol. 24,24-Difluoro-25-hydroxyvitamin D3 is approximately equipotent with 25-hydroxyvitamin D3 in stimulation of growth, mineralization of rachitic bone, and elevation of serum inorganic phosphorus. Radiological manifestations of rickets were also equally improved by 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3. Compared with vitamin D3, these compounds were approximately 5 to 10 times more active in mineralization using rats on a low phosphorus, vitamin D-deficient diet. The functional role, if any, for 24-hydroxylated vitamin D compounds, such as 24,25-dihydroxyvitamin D3, therefore remains obscure. It appears that vitamin D compounds that cannot be 24-hydroxylated evoke no disorder in bone mineralization.  相似文献   

17.
The ingestion of Solanum glaucophyllum (SG) causes a calcinosis of cattle named Enteque Seco (ES). The toxic principle is the 1,25-(OH)2D3, mainly conjugated as glycoside. This study aims to validate a simple novel method of evaluation of the VDA of SG leaves. Aqueous extracts of SG were purified using C18 minicolumns and assayed by RIA with an antibody raised in rabbits by injection of the acid—C22, 1α-(OH)Vitamin D3. Data were expresed as glycoside equivalent to 1,25-(OH)2D3 in ng/g of dry leaves. We compared this data with 1,25-(OH)2D3 levels measured, in the same samples, by liquid chromatography (HPLC) after enzyme cleavage. This procedure involved the incubation of SG leaves with rumen fluid, followed by C18-OH solid phase extraction. The 1,25-(OH)2D3 fraction was run by HPLC and detection was achieved using a photodiode array detector. Data were expressed as micrograms of 1,25-(OH)2D3/g dry leaves. A significant regression of 1,25-(OH)2D3 levels (Y) as a function of glycoside RIA 1,25-(OH)2D3 equivalents (X) was found: Y = 12.02 + 0.35X [R = 0.81; P = 0,0002; N = 15], allowing us to conclude that this novel assay could be used to estimate the amount of this active principle contained in SG leaves.  相似文献   

18.
Vitamin D3 (cholecalciferol) is endogenously produced in the skin of primates when exposed to the appropriate wavelengths of ultraviolet light (UV-B). Common marmosets (Callithrix jacchus) maintained indoors require dietary provision of vitamin D3 due to lack of sunlight exposure. The minimum dietary vitamin D3 requirement and the maximum amount of vitamin D3 that can be metabolized by marmosets is unknown. Observations of metabolic bone disease and gastrointestinal malabsorption have led to wide variation in dietary vitamin D3 provision amongst research institutions, with resulting variation in circulating 25-hydroxyvitamin D3 (25(OH)D3), the accepted marker for vitamin D sufficiency/deficiency. Multiple studies have reported serum 25(OH)D3 in captive marmosets, but 25(OH)D3 is not the final product of vitamin D3 metabolism. In addition to serum 25(OH)D3, we measured the most physiologically active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and the less well understood metabolite, 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) to characterize the marmoset's ability to metabolize dietary vitamin D3. We present vitamin D3 metabolite and related serum chemistry value colony reference ranges in marmosets provided diets with 26,367 (Colony A, N = 113) or 8,888 (Colony B, N = 52) international units (IU) of dietary vitamin D3 per kilogram of dry matter. Colony A marmosets had higher serum 25(OH)D3 (426 ng/ml [SD 200] vs. 215 ng/ml [SD 113]) and 24,25(OH)2D3 (53 ng/ml [SD 35] vs. 7 ng/ml [SD 5]). There was no difference in serum 1,25(OH)2D3 between the colonies. Serum 1,25(OH)2D3 increased and 25(OH)D3 decreased with age, but the effect was weak. Marmosets tightly regulate metabolism of dietary vitamin D3 into the active metabolite 1,25(OH)2D3; excess 25(OH)D3 is metabolized into 24,25(OH)2D3. This ability explains the tolerance of high levels of dietary vitamin D3 by marmosets, however, our data suggest that these high dietary levels are not required.  相似文献   

19.
In this article, we report the results of a case control study carried out on 290 Turkish pregnant women at 5–24 wk of gestation to determine their zinc, folic acid, and vitamin B12 levels in relation to their nutritional and socioconomic status. The women were divided into two groups (n=145 each), depending on the stage of gestation. Group I consisted of women in the first trimester of gestation; those in the second trimester were allocated into group II. Twenty-five age-matched, healthy nonpregnant women were selected as controls. The nutritional status of the subjects was determined by means of a survey. Based on this, the women were subdivided into three subgroups: malnourished (PN), moderately nourished (MN), and well nourished (WN). Also from the survey, the socioeconomic status was classified as good (G) or bad (B). A statistically significant decrease on zinc and folic acid was observed in group I women, as their socioeconomic status worsened. In group II, zinc decreased only in the PN and MN subgroups, p<0.001. The folic acid and vitamin B12 levels did not change significantly during the second trimester of gestation in all subgroups. Regarding zinc, nutrition, or dietary habits are more relevant than socioeconomic status, but poor nutrition affects folic acid levels only during the first trimester of gestation.  相似文献   

20.
We postulated that dietary ingestion of vitamin D may be used by some Alaskan Arctic marine mammal species in addition to, or instead of, cutaneous production to meet nutritional requirements. Zooplankton (n=5) sampled near Kaktovik, Alaska, contained no measurable vitamin D2 or D3, but did contain provitamin D (7‐dehydrocholesterol), the cutaneous precursor for previtamin D3 in mammals. Fillets and livers from five fish species were sampled near Barrow, Alaska, and evaluated for vitamin D3 content (no vitamin D2 was detected). Differences in vitamin D3 content appeared significant (P≤0.10) among fish livers (Kruskal‐Wallis [H test]=8.25, df=4, P=0.08) and among fish fillets (H=7.80, df=4, P=0.01). We also found significant differences in several pairwise comparisons (Mann‐Whitney U‐test) of vitamin D3 levels in fillets and livers. Blubber from six species of marine mammals had no detectable vitamin D2. The H test results for blubber vitamin D3 concentration were highly significant: 28.12, df=5, P<0.001. There were also significant differences in vitamin D3 content from blubber in pairwise comparisons of primarily invertebrate feeders (bowhead whale (Balaena mysticetus) [mean=4.20 SD±1.10 ng/g], and Pacific walrus (Odobenus rosmarus divergens) [5.43±2.82 ng/g]) vs. primarily piscivorous feeders (ringed seal (Phoca hispida) [746.57±493.00 ng/g] and beluga whale (Delphinapterus leucas) [426.00±174.92 ng/g]) and a semiaquatic terrestrial carnivore (polar bear (Ursus maritimus) [406.17±311.70 ng/g]). The bearded seal (Erignathus barbatus) had intermediate blubber vitamin D3 concentration (156.83±139.25 ng/g), which may reflect an intermediate‐type feeding strategy or an artifact of the small sample size. Zoo Biol 23:33–43, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号