首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of cells suspended anaerobically in buffered (pH 4.5) M ethanol remained viable to a greater extent when their plasma membranes were enriched in linoleyl rather than oleyl residues irrespective of the nature of the sterol enrichment. However, populations with membranes enriched in ergosterol or stigmasterol and linoleyl residues were more resistant to ethanol than populations enriched in campesterol or cholesterol and linoleyl residues. Populations enriched in ergosterol and cetoleic acid lost viability at about the same rate as those enriched in oleyl residues, while populations grown in the presence of this sterol and palmitoleic acid were more resistant to ethanol. Suspending cells in buffered ethanol for up to 24 h did not lower the ethanol concentration.  相似文献   

2.
The transport of glycine, L-alanine, L-proline, L-leucine, L-lysine, L-phenylalanine and L-glutamic acid did not enhance in various strains of Candida cells, when they were grown in proline containing medium or preincubated with proline. However, under similar conditions, a significant enhancement in the level of accumulation of amino acids (derepression) was observed in Saccharomyces cerevisiae X-2180-A2 (GAP+) cells, which was sensitive to ammonium ions (NH4+). As expected, the derepression was absent in GAP- cells of S. cerevisiae X-2180 (GAP- mutant). In contrast to S. cerevisiae (GAP+) cells, the increase in few amino acids uptake in different Candida strains, grown in proline or preincubated in proline, could not be inhibited by cycloheximide, NH4+ or their D-stereoisomers. It appears that derepression of amino acids transport, a well known phenomenon in S. cerevisiae, may not exist in Candida species.  相似文献   

3.
The rates of bacterial growth in nature are often restricted by low concentrations of oxygen or carbon substrates. In the present study the metabolic properties of 24 isolates that had been isolated using various concentrations of 3-chlorobenzoate, benzoate and oxygen as well as using continuous culture at high and low growth rates were determined to investigate the effects of these parameters on the metabolism of monoaromatic compounds. Bacteria were enriched from different sampling sites and subsequently isolated. In batch culture this was done both under low oxygen (2% O(2)) and air-saturated concentrations. Chemostat enrichments were performed under either oxygen or 3-chlorobenzoate limiting conditions. Bacteria metabolizing aromatics with gentisate or protocatechuate as intermediates (gp bacteria) as well as bacteria metabolizing aromatic compounds via catechols (cat bacteria) were isolated from batch cultures when either benzoate or 3CBA were used as C sources, regardless of the enrichment conditions applied. In contrast, enrichments performed in chemostats at low dilution rates resulted in gp-type organisms only, whereas at high dilution rates cat-type organisms were enriched, irrespective of the oxygen and 3-chlorobenzoate concentration used during enrichment. It is noteworthy that the gp-type of bacteria possessed relatively low μ(max) values on 3CBA and benzoate along with relatively high substrate and oxygen affinities for these compounds. This is in contrast with cat-type of bacteria, which seemed to be characterized by high maximum specific growth rates on the aromatic substrates and relatively high apparent half saturation constants. In contrast, bacteria degrading chlorobenzoate via gentisate or protocatechuate may possibly be better adapted to conditions leading to growth at reduced rates such as low oxygen and low substrate concentrations.  相似文献   

4.
An Escherichia coli strain that exhibits a double auxotrophy for L-alanine and D-alanine was constructed. During growth in the presence of the dipeptide L-alanyl-L-alanine (Ala-Ala), this was fully consumed with concomitant extracellular accumulation of l-alanine in a twofold molar concentration compared with the dipeptide. This finding indicates that the strain not only can hardly degrade L-alanine but has an export system(s) for L-alanine. To obtain access to the system, we chemically mutagenized the L-alanine-nonmetabolizing strain and isolated mutants with increased Ala-Ala sensitivity. Two such mutants accumulated L-alanine up to 150-190 mM in the cytoplasm with a reduced rate of L-alanine export relative to the parent strain in the presence of Ala-Ala. Furthermore, when chloramphenicol was added together with Ala-Ala, the parent strain accumulated L-alanine in the cytoplasm to a level similar to that observed in the mutants in the absence of chloramphenicol. In contrast, the intracellular l-alanine level in the mutants did not change irrespective of chloramphenicol treatment. From these results, we conclude that E. coli has an inducible l-alanine export carrier, together with a second, as yet unidentified, mechanism of alanine export.  相似文献   

5.
Perchloric acid extracts of LLC-PK1/Cl4 cells, a renal epithelial cell line, incubated with either [2-13C]glycine L-[3-13C]alanine, or D,L-[3-13C]aspartic acid were investigated by 13C-NMR spectroscopy. All amino acids, except labelled glycine, gave rise to glycolytic products and tricarboxylic acid cycle (TCA) intermediates. For the first time we also observed activity of gamma-glutamyltransferase activity and glutathione synthetase activity in LLC-PK1 cells, as is evident from enrichment of reduced glutathione. Time courses showed that only 6% of the labelled glycine was utilized in 30 min, whereas 31% of L-alanine and 60% of L-aspartic acid was utilized during the same period. 13C-NMR was also shown to be a useful tool for the determination of amino acid uptake in LLC-PK1 cells. These uptake experiments indicated that glycine, alanine and aspartic acid are transported into Cl4 cells via a sodium-dependent process. From the relative enrichment of the glutamate carbons, we calculated the activity of pyruvate dehydrogenase to be about 61% when labelled L-alanine was the only carbon source for LLC-PK1/Cl4 cells. Experiments with labelled D,L-aspartic, however, showed that about 40% of C-3-enriched oxaloacetate (arising from a de-amination of aspartic acid) reached the pyruvate pool.  相似文献   

6.
Rat adrenal cells in culture were used to study the uptake of cholesteryl linoleyl ether [( 3H]cholesteryl linoleyl ether), a nonhydrolyzable analog of cholesteryl ester. When [3H]cholesteryl linoleyl ether was added in the form of liposomes, its uptake was enhanced by adrenocorticotropin (ACTH) and by addition of milk lipoprotein lipase and interfered by heparin. When the adrenal cells were incubated with homologous [3H]cholesteryl linoleyl ether-HDL, ACTH treatment also resulted in an increase in [3H]cholesteryl linoleyl ether uptake. The uptake of [3H]cholesteryl linoleyl ether was in excess of the uptake and metabolism of 125I-labeled HDL protein and was not sensitive to heparin. Unlabeled HDL or delipidated HDL reduced very markedly the uptake of [3H]cholesteryl linoleyl ether, while addition of phosphatidylcholine liposomes had little effect. Attempts were made to deplete and enrich the adrenal cells in cholesterol and, while depletion resulted in a decrease in [3H]cholesteryl linoleyl ether-HDL uptake, enrichment of cells with cholesterol had no effect. Among the individual apolipoproteins tested, apolipoprotein A-I and the C apolipoproteins reduced [3H]cholesteryl linoleyl ether uptake, while apolipoprotein E was not effective. Since the labeled ligand studied was a lipid, these effects could not be due to an exchange of apolipoproteins, but indicated competition for binding sites. Preferential uptake of human [3H]cholesteryl linoleyl ether-HDL3 by bovine adrenal cells was found when compared to the uptake and metabolism of 125I-labeled HDL. The present results suggest that the preferential uptake of HDL cholesteryl ester (as studied with [3H]cholesteryl linoleyl ether) requires an interaction between the apolipoproteins of HDL and cell surface components.  相似文献   

7.
Lipoprotein lipase mediated transfer of cholesteryl ester and its ether analog, cholesteryl linoleyl ether, from unilamellar liposomes, prepared from a nonhydrolyzable ether analog of 1,2-diacyl-sn-glycero-3-phosphocholine (PC), 1,2-dioleyl ether-sn-glycero-3-phosphocholine (DOEPC), was studied in various cells in culture. It was found that lipoprotein lipase enhanced the uptake of cholesteryl linoleyl ether and of DOEPC. These findings provided a definitive proof that hydrolysis of liposomal PC is not needed for the lipoprotein lipase catalyzed transfer of cholesteryl linoleyl ether and cholesteryl ester to cells. The lipids transferred by lipoprotein lipase to cells were localized in three compartments, trypsin-releasable, resistant and metabolic; the latter was a chloroquine-sensitive pool as evidenced by inhibition of cholesteryl ester hydrolysis. Labeled PC and, to a lesser extent DOEPC, in the trypsin-releasable pool was able to return to the medium, while cholesteryl linoleyl ether and cholesteryl ester required cholesteryl ester transfer protein for release. The transfer of cholesteryl linoleyl ether and cholesteryl ester into a trypsin-resistant compartment did not require metabolic energy and occurred also in formaldehyde-fixed cells. Metabolic energy was needed for the translocation of cholesteryl linoleyl ether and cholesteryl ester into the lysosomal compartment, presumably by a process of endocytosis. The physiological relevance of the present findings is that as intravascular hydrolysis of triacylglycerol-rich lipoproteins is mediated by lipoprotein lipase attached to endothelial cells, the latter can provide a very extensive surface for removal and metabolism of phospholipids and cholesteryl ester by a mechanism mediated by lipoprotein lipase.  相似文献   

8.
Transport of heparan sulfate into the nuclei of hepatocytes   总被引:13,自引:0,他引:13  
Monolayer cultures of a rat hepatocyte cell line shown previously to accumulate a nuclear pool of free heparan sulfate chains that are enriched in sulfated glucuronic acid (GlcA) residues (Fedarko, N.S., and Conrad, H.E., (1986) J. Cell Biol. 587-599) were incubated with 35SO4(2-), and the rate of appearance of heparan [35S]sulfate in the nuclei was measured. Heparan [35S]sulfate began to accumulate in the nuclei 2 h after the administration of 35SO4(2-) to the cells and reached a steady state level after 20 h. Heparan [35S]sulfate was lost from the nuclei of prelabeled cells with a t1/2 of 8 h. Chloroquine did not inhibit the transport of heparan sulfate into the nucleus, but increased the t1/2 for the exit of heparan sulfate from the nucleus to 20 h and led to a doubling of the steady state level of nuclear heparan sulfate. Heparan [35S]sulfate which was obtained from the medium or from the cell matrix of a labeled culture and which contained only low levels of GlcA-2-SO4 residues was incubated with cultures of unlabeled cells, and the uptake of the exogenous heparan [35S]sulfate was studied. At 37 degrees C the cells took up proteoheparan [35S]sulfate and transported about 10% of the internalized heparan [35S]sulfate into the nucleus, where it appeared as free chains. The heparan [35S]sulfate isolated from the nucleus was enriched in GlcA-2-SO4 residues, whereas the heparan [35S]sulfate remaining in the rest of the intracellular pool showed a corresponding depletion in GlcA-2-SO4 residues. At 16 degrees C, where endocytosed materials do not enter the lysosomes, the cells also transported exogenous proteoheparan [35S]sulfate to the nucleus with similar processing. Thus, the metabolism of exogenous heparan sulfate by hepatocytes follows the same pathway observed in continuously labeled cells and does not involve lysosomal processing of the internalized heparan sulfate.  相似文献   

9.
Studies were made on the effect of tyramine on arylsulfatase synthesis in mutants of Aerobacter aerogenes ATCC 9621 deficient in enzymes involved in tyramine degradation. As shown previously, some sulfur compounds, such as inorganic sulfate, repressed enzyme synthesis while others, such as methionine, did not. Tyramine caused derepression of enzyme synthesis, which is repressed by inorganic sulfate. The present work showed that, although tyramine readily derepressed arylsulfatase synthesis, metabolites of tyramine in either the wild-type or mutant strains did not, so that the derepression is due to the particular structure of tyramine. Kinetic studies on the cells indicated that incorporation of sulfur into protein and enzyme synthesis occurred on supply of either a sulfur compound, which did not cause repression, or of tyramine, which caused derepression, irrespective of the type of sulfur compound added, if any.  相似文献   

10.
The effect of enrichment with phthalate on the biodegradation of polycyclic aromatic hydrocarbons (PAH) was tested with bioreactor-treated and untreated contaminated soil from a former manufactured gas plant (MGP) site. Soil samples that had been treated in a bioreactor and enriched with phthalate mineralized (14)C-labeled phenanthrene and pyrene to a greater extent than unenriched samples over a 22.5-h incubation, but did not stimulate benzo[a]pyrene mineralization. In contrast to the positive effects on (14)C-labeled phenanthrene and pyrene, no significant differences were found in the extent of biodegradation of native PAH when untreated contaminated soil was incubated with and without phthalate amendment. Denaturing-gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes from unenriched and phthalate-enriched soil samples were substantially different, and clonal sequences matched to prominent DGGE bands revealed that beta-Proteobacteria related to Ralstonia were most highly enriched by phthalate addition. Quantitative real-time PCR analyses confirmed that, of previously determined PAH-degraders in the bioreactor, only Ralstonia-type organisms increased in response to enrichment, accounting for 89% of the additional bacterial 16S rRNA genes resulting from phthalate enrichment. These findings indicate that phthalate amendment of this particular PAH-contaminated soil did not significantly enrich for organisms associated with high molecular weight PAH degradation or have any significant effect on overall degradation of native PAH in the soil.  相似文献   

11.
The relationship between extracellular palmitate and the accumulation of long-chain fatty-acyl coenzyme A with that of high-energy phosphate metabolism was investigated in the isolated perfused diabetic rat heart. Hearts were perfused with a glucose/albumin buffer supplemented with 0, 0.5, 1.2 or 2.0 mM palmitate. 31P-NMR was used to analyze phosphocreatine and ATP metabolism during 1 h of constant-flow recirculation perfusion. At the end of perfusion, frozen samples were taken for chemical analysis of high-energy phosphates and the free and acylated fractions of coenzyme A and carnitine. Perfusion of diabetic hearts with palmitate, unlike control hearts, caused a time-dependent and concentration-dependent reduction in ATP, despite normal and constant phosphocreatine. Concentrations of acid-soluble coenzyme A, long-chain-acyl coenzyme A and total tissue coenzyme A were elevated in palmitate-perfused diabetic hearts, while the total tissue carnitine pool was decreased. Increases in long-chain-acyl coenzyme A correlated with the reduction in myocardial ATP. This reduction in ATP could not be adequately explained by alterations in heart rate, perfusion pressure or vascular resistance.  相似文献   

12.
Helicobacter pylori utilises urea for amino acid synthesis   总被引:2,自引:0,他引:2  
Abstract Helicobacter pylori has one of the highest urease activities of all known bacteria. Its enzymatic production of ammonia protects the organism from acid damage by gastric juice. The possibility that the urease activity allows the bacterium to utilise urea as a nitrogen source for the synthesis of amino acids was investigated. H. pylori (NCTC 11638) was incubated with 50 mM urea, enriched to 5 atom% excess 15N, that is the excess enrichment of 15N above the normal background, in the presence of either NaCl pH 6.0, or 0.2M citrate pH 6.0. E. coli (NCTC 9001) was used as a urease-negative control. 15N enrichment was detected by isotope ratio mass spectrometry. H. pylori showed intracellular incorporation of 15N in the presence of citrate buffer pH 6.0 but there was no significant incorporation of 15N in unbuffered saline or by E. coli in either pH 6.0 citrate buffer or unbuffered saline. The intracellular fate of the urea-nitrogen was determined by means of gas chromatography/mass spectrometry following incubation with 15N enriched 5 mM urea in the presence of either 0.2 M citrate buffer pH 6.0 or 0.2 M acetate buffer pH 6.0. After 5 min incubation in either buffer the 15n label appeared in glutamate, glutamine, phenylalanine, aspartate and alanine. It appears, therefore, that at pH and urea concentrations typical of the gastric mucosal surface, H. pylori utilises exogenous urea as a nitrogen source for amino acid synthesis. The ammonia produced by H. pylori urease activity thus facilitates the organism's nitrogen metabolism at neutral pH as well as protecting it from acid damage at low pH.  相似文献   

13.
The kinetic parameters associated with the microbial dehalogenation of 3-chlorobenzoate, 3,5-dichlorobenzoate, and 4-amino-3,5-dichlorobenzoate were measured in anoxic sediment slurries and in an enriched methanogenic culture grown on 3-chlorobenzoate. The initial dehalogenation of the substrates exhibited Michaelis-Menten kinetics. The apparent Km values for the above substrates ranged from 30 to 67 μM. The pattern of degradation, however, was unusual. The enrichment culture accumulated partially dehalogenated intermediates to 72 and 98% of that possible when incubated with either 3,5-dichloro- or 4-amino-3,5-dichlorobenzoate, respectively, but did not accumulate significant amounts of benzoate when 3-chlorobenzoate was the sole carbon and energy source. The accumulated intermediates were rapidly metabolized only after the parent substrate concentrations were nearly depleted (<5 μM). A sequential Michaelis-Menten model was developed to account for the observed pattern of biodegradation. Using this model, we found that relative differences in the Km and Vmax parameters for substrate and intermediate dehalogenations alone were insufficient to explain the transitory accumulation of intermediates. However, by inserting a competitive inhibition term, with the primary substrate as the inhibitor, the observed pattern of degradation was simulated. Apparently, the dichlorinated substrates competitively inhibit the dehalogenation of the monochlorinated substrates. Similar kinetic patterns were noted for sediments, although the rates were slower than in the enrichment culture.  相似文献   

14.
A sulfide-resistant ctrain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium or in Berea sandstone cores. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. These data suggest that strain F would be effective in controlling sulfide production in oil reservoirs and other environments.  相似文献   

15.
Washed excised roots of rice (Oryza sativa) immediately started to produce CH4 when they were incubated in phosphate buffer under anoxic conditions (N2 atmosphere), with initial rates varying between 2 and 70nmolh(-1)g(-1) dry weight of root material (mean +/- SE: 20.3 +/- 5.9 nmol h(-1) g(-1) dry weight; n = 18). Production of CH4 continued for at least 500 h, with rates usually decreasing slowly. CH4 production was not significantly affected by methyl fluoride, an inhibitor of acetoclastic methanogenesis. Less than 0.5% of added [2-14C]-acetate was converted to 14CH4, and conversion of 14CO2 to 14CH4 indicated that CH4 was almost exclusively produced from CO2. Occasionally, however, especially when the roots were incubated without additional buffer, CH4 production started to accelerate after about 200h reaching rates of > 100 nmol h(-1) g(-1) dry weight. Methyl fluoride inhibited methanogenesis by more than 20% only in these cases, and the conversion of 14CO2 to 14CH4 decreased. These results indicate that CO2-dependent rather than acetoclastic methanogenesis was primarily responsible for CH4 production in anoxically incubated rice roots. Determination of most probable numbers of methanogens on washed roots showed highest numbers (10(6)g(-1) dry roots) on H2 and ethanol, i.e. substrates that support CH4 production from CO2. Numbers on acetate (10(5) g(-1) dry roots) and methanol (10(4)g(-1) dry roots) were lower. Methanogenic consortia enriched on H2 and ethanol were characterized phylogenetically by comparative sequence analysis of archaeal small-subunit (SSU) ribosomal RNA-encoding genes (rDNA). These sequences showed a high similarity to SSU rDNA clones that had been obtained previously by direct extraction of total DNA from washed rice roots. The SSU rDNA sequences recovered from the H2/CO2-using consortium either belonged to a novel lineage of methanogens that grouped within the phylogenetic radiation of the Methanosarcinales and Methanomicrobiales or were affiliated with Methanobacterium bryantii. SSU rDNA sequences retrieved from the ethanol-using consortium either grouped within the genus Methanosarcina or belonged to another novel lineage within the phylogenetic radiation of the Methanosarcinales and Methanomicrobiales. Cultured organisms belonging to either of the two novel lineages have not been reported yet.  相似文献   

16.
Analyses were made of the fatty-acyl composition of phospholipids from each of two strains of Saccharomyces cerevisiae and Zygosaccharomyces bailii grown aerobically. Residues of C16:0, C16:1 and C18:1 predominated in phospholipids from strains of the first yeast, while phospholipids from Z. bailii contained mainly C16:0, C18:1 and C18:2 residues. S. cerevisiae NCYC 431, grown anaerobically in media supplemented with ergosterol and C14:1, C16:1, C18:1, C18:2, C18:3 or C20:1 fatty acids, contained phospholipids enriched with residues of the exogenously provided acid, to a greater extent with shorter chain than longer chain acids. A plot of the permeability coefficient for sulphite, derived from Woolf-Eadie plots, against the degree of unsaturation in phospholipids (expressed as delta mol-1 value) showed that the coefficient was greater the lower the degree of unsaturation in the phospholipids. A plot of the permeability coefficient against values for the mean fatty-acyl chain length divided by the delta mol-1 value, which is an approximation of the cross-section surface area of a phospholipid molecule, showed that the permeability coefficient tended to increase the greater the surface-area value.  相似文献   

17.
18.
In the context of land use change, the dynamics of the water extractable organic carbon (WEOC) pool and CO2 production were studied in soil from a native oak-beech forest and a Douglas fir plantation during a 98-day incubation at a range of temperatures from 8°C to 28°C. The soil organic carbon, water contents and mineralisation rates of soil samples from the 0–5 cm layer were higher in the native forest than in the Douglas fir plantation. During incubation, a temperature-dependent shift in the δ13C of respired CO2 was observed, suggesting that different carbon compounds were mineralised at different temperatures. The initial size of the WEOC pool was not affected by forest type. The WEOC pool size of samples from the native forest did not change consistently over time whereas it decreased significantly in samples from the Douglas plantation, irrespective of soil temperature. No clear changes in the δ13C values of the WEOC were observed, irrespective of soil origin. The fate of the WEOC, independent of soil organic carbon content or mineralisation rates, appeared to relate to forest types. Replacement of native oak-beech forest with Douglas fir plantation impacts carbon input to the soil, mineralisation rates and production of dissolved organic carbon.  相似文献   

19.
A new fluorescence formed while microtubule-associated protein tau was incubated at 25 and 37C for hours, with its maximum excitation at 230 and 280 nm, respectively. The fluorescence completely formed after tau was incubated in phosphate buffer and Tris-HCl buffer for approximately 20 h, with a relaxation phase about 2-4 h. The light scattering of the sample solution improved during formation of the fluorescence when tau was incubated. Both the fluorescence and tau oligomers did not form when tau was incubated in the buffers containing DTT. On the other hand, heparin improved both tau aggregation and the fluorescence formation. It suggests that the fluorescence comes from tau polymerization, which may follow the mechanism of tyrosine-tyrosinate emission for a protein not containing any tryptophan residues. This new fluorescence could be used as a probe to tau polymers.  相似文献   

20.
探究大肠杆菌细胞内负责L-丙氨酸合成的转氨酶对菌株代谢及L-色氨酸合成的影响。运用Red重组技术分别对编码L-丙氨酸转氨酶的基因alaA、alaC和avtA进行敲除。通过摇瓶和50 L罐中探究其对L-色氨酸积累、L-丙氨酸代谢及菌体生长变化情况。结果显示,除3种L-丙氨酸转氨酶全部缺失的工程菌L-丙氨酸合成受阻、菌体生长受到较强抑制外,其它各任意一种或两种丙氨酸转氨酶缺失菌株的生长并未有较大差异,但色氨酸的合成变化显著。其中alaA和alaC双基因缺失的E.coli FS-T4工程菌,摇瓶发酵L-色氨酸产量达6.08 g/L,L-丙氨酸含量仅0.16 g/L,较出发菌株分别提高了26.7%和降低了91.0%。在50 L罐中E.coli FS-T4工程菌L-色氨酸产量最高可达41.9 g/L,糖酸转化率达20.5%,分别较出发菌株提高了13.8%和5.1%。转氨酶AlaA和AlaC的同时缺失,既可以满足细胞整体氨基酸池的需要,而且有利于减少杂酸的积累,使得更多的碳源流向L-色氨酸的合成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号