首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolytic activation of prophenoloxidase (proPO) is an integral part of the insect immune system against pathogen and parasite infection. This reaction is mediated by a proPO-activating proteinase (PAP) and its cofactor in the tobacco hornworm, Manduca sexta (Proc. Natl. Acad. Sci. USA 95 (1998) 12220; J. Biol. Chem. 278 (2003) 3552; Insect Biochem. Mol. Biol. 33 (2003) 1049). The cofactor consists of two serine proteinase homologs (SPHs), which associate with immulectin-2, a calcium-dependent lectin that binds to lipopolysaccharide (Insect Biochem. Mol. Biol. 33 (2003) 197). In order to understand the auxiliary effect of SPH-1 and SPH-2 in proPO activation, we started to investigate the molecular interactions among proPO, PAP-3, and the proteinase-like proteins. M. sexta SPH-1 and SPH-2 were purified from hemolymph of prepupae by hydroxylapatite, gel filtration, lectin-affinity, and ion exchange chromatography. They existed as non-covalent oligomers with an average molecular mass of about 790 kDa. MALDI-TOF mass fingerprint analysis revealed a new cleavage site in SPH-1 before Asp85. The PAP cofactor did not significantly alter Michaelis constant (KM) or kcat of PAP-3 towards a synthetic substrate, acetyl-Ile-Glu-Ala-Arg-p-nitroanilide, but greatly enhanced proPO activation by PAP-3. The apparent KM for proPO was determined to be about 9.4 microg/ml, close to its estimated concentration in larval hemolymph. In the presence of excess proPO and a set amount of PAP-3, increasing levels of phenoloxidase (PO) activity were detected as more SPHs were added. Half of the maximum proPO activation occurred when the molar ratio of PAP-3 to SPH was 1:1.4. Gel filtration experiments suggested that proPO, PAP-3, and the cofactor formed a ternary complex.  相似文献   

2.
In insects, the prophenoloxidase activation system is a defense mechanism against parasites and pathogens. Recognition of parasites or pathogens by pattern recognition receptors triggers activation of a serine proteinase cascade, leading to activation of prophenoloxidase-activating proteinase (PAP). PAP converts inactive prophenoloxidase (proPO) to active phenoloxidase (PO), which then catalyzes oxidation of phenolic compounds that can polymerize to form melanin. Because quinone intermediates and melanin are toxic to both hosts and pathogens, activation of proPO must be tightly regulated and localized. We report here purification and cDNA cloning of serine proteinase homologs (SPHs) from the tobacco hornworm, Manduca sexta, which interact with PAP-1 in proPO activation. Two SPHs were co-purified from plasma of M. sexta larvae with immulectin-2, a C-type lectin that binds to bacterial lipopolysaccharide. They contain an amino-terminal clip domain connected to a carboxyl-terminal serine proteinase-like domain. PAP-1 alone cannot efficiently activate proPO, but a mixture of SPHs and PAP-1 was much more effective for proPO activation. Immulectin-2, proPO and PAP-1 in hemolymph bound to the immobilized recombinant proteinase-like domain of SPH-1, indicating that a complex containing these proteins may exist in hemolymph. Since immulectin-2 is a pattern recognition receptor that binds to surface carbohydrates on pathogens, such a protein complex may localize activation of proPO on the surface of pathogens. SPH, which binds to immulectin-2, may function as a mediator to recruit proPO and PAP to the site of infection.  相似文献   

3.
Phenoloxidase (PO) is a key enzyme implicated in several defense mechanisms in insects and crustaceans. It is converted from prophenoloxidase (proPO) through limited proteolysis by prophenoloxidase-activating proteinase (PAP). We previously isolated PAP-1 from integument and PAP-2 from hemolymph of the tobacco hornworm, Manduca sexta. Here, we report the purification, characterization, and regulation of PAP-3 from the hemolymph. Similar to M. sexta PAP-2, PAP-3 consists of two amino-terminal clip domains followed by a carboxyl-terminal catalytic domain, whereas PAP-1 contains only one clip domain at its amino-terminus. Purified PAP-3 cleaved proPO at Arg51 and generated a low level of PO activity. However, the enzyme efficiently activated proPO when M. sexta serine proteinase homolog-1 and -2 were present. These proteinase-like proteins associate with immulectin-2, a pattern-recognition receptor for lipopolysaccharide. M. sexta PAP-3 was inhibited by recombinant serpin-1J, which formed an SDS-stable complex with the enzyme. PAP-3 mRNA was detected at a low level in the fat body or hemocytes of naive larvae, but was elevated in insects that had been challenged with bacteria. These data, along with our previous results on PAP-1 and PAP-2, indicate that proPO activation by PAPs is a tightly regulated process. Individual PAPs could play different roles during immune responses and developmental processes.  相似文献   

4.
Prophenoloxidase activation is a component of the immune system in insects and crustaceans. We recently purified and cloned a new prophenoloxidase-activating proteinase (PAP-2) from hemolymph of the tobacco hornworm Manduca sexta [J. Biol. Chem. 278, 3552-3561]. As the terminal component of a putative serine proteinase cascade, this enzyme activates prophenoloxidase (proPO) via limited proteolysis. To purify and study the activating proteinase for PAP-2 from this insect, we expressed the zymogen of PAP-2 (proPAP-2) in insect cells infected by a recombinant baculovirus that harbors the cDNA. To facilitate the purification of proPAP-2, we modified a commercial vector (pFastBac1) by inserting a synthetic DNA fragment encoding a hexahistidine sequence, allowing fusion of the affinity tag to the carboxyl terminus of a protein. After Spodoptera frugiperda Sf21 cells were infected by the virus, recombinant proPAP-2 was efficiently secreted into the media at a concentration of 5.9 microg/ml under the optimal conditions. After ammonium sulfate precipitation, the proenzyme was purified to near homogeneity by affinity chromatography on Ni(2+)-NTA agarose. Western blot analysis indicated that the recombinant proPAP-2 has a mobility slightly lower than that of the zymogen from M. sexta hemolymph. The molecular mass and isoelectric point of proPAP-2 were determined to be 47,573+/-11Da and 6.6, respectively. After the purified proenzyme was added to hemolymph from induced M. sexta larvae, it was rapidly activated by an unknown proteinase in the presence of peptidoglycan.  相似文献   

5.
Analogous to blood coagulation and complement activation in mammals, some insect defense responses (e.g. prophenoloxidase (proPO) activation and Toll pathway initiation) are mediated by serine proteinase cascades and regulated by serpins in hemolymph. We recently isolated Manduca sexta serpin-6 from hemolymph of the bacteria-challenged larvae, which selectively inhibited proPO-activating proteinase-3 (PAP-3) (Wang, Y., and Jiang, H. (2004) Insect Biochem. Mol. Biol. 34, 387-395). To further characterize its structure and function, we cloned serpin-6 from an induced fat body cDNA library using a PCR-derived probe. M. sexta serpin-6 is 55% similar in amino acid sequence to Drosophila melanogaster serpin-5, an immune-responsive protein. We produced serpin-6 in an Escherichia coli expression system and purified the soluble protein by nickel affinity and hydrophobic interaction chromatography. The recombinant protein specifically inhibited PAP-3 and blocked proPO activation in vitro in a concentration-dependent manner. Matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated that the cleavage site of serpin-6 is between Arg373 and Ser374. Serpin-6 is constitutively present in hemolymph of naive larvae, and its mRNA and protein levels significantly increase after a bacterial injection. The association rate constant of serpin-6 and PAP-3 is 2.6 x 10(4) m(-1) s(-1), indicating that serpin-6 may contribute to the inhibitory regulation of PAP-3 in the hemolymph. We also identified the covalent complex of serpin-6 and PAP-3 in induced hemolymph by immunoaffinity chromatography and mass spectrometry. Furthermore, immulectin-2, serine proteinase homologs, proPO, PO, attacin-2, and a complex of serpin-6 and hemolymph proteinase-8 were also detected in the proteins eluted from the immunoaffinity column using serpin-6 antibody. These results suggest that serpin-6 plays important roles in the regulation of immune proteinases in the hemolymph.  相似文献   

6.
7.
In the tobacco hornworm Manduca sexta, proteolytic activation of prophenoloxidase (proPO) is mediated by three proPO-activating proteinases (PAPs) and two serine proteinase homologs (SPHs) (Proceedings of the National Academy of Sciences, USA 95 (1998) 12220-12225; J. Biol. Chem. 278 (2003a) 3552-3561; Insect Biochem. Mol. Biol. 33 (2003b) 1049-1060). While our current data are consistent with the hypothesis that the SPHs serve as a cofactor/anchor for PAPs (Insect Biochemistry and Molecular Biology 33 (2003) 197-208; Insect Biochemistry and Molecular Biology 34 (2004) 731-742), roles of these clip-domain proteins (i.e. PAPs and SPHs) in proPO activation are poorly defined. To better understand this process, we further characterized the activation reaction using proPO, PAP-1 and SPHs. PAP-1 itself cleaved nearly 1/3 of proPO at Arg51 without generating much phenoloxidase (PO) activity. In the presence of SPHs, the cleavage of proPO became more complete while the increase in PO activity was over 20-fold, indicating that the extent of cleavage does not directly correlate with PO activity. Since SPHs and p-amidinophenyl methanesulfonyl fluoride (APMSF)-treated PAP-1 did not generate active PO by interacting with proPO, proteolytic cleavage is critical for proPO activation. After 1/5 of proPO was processed by PAP-1 alone which was then inactivated by M. sexta serpin-1J or APMSF, further incubation of the reaction mixture with SPHs failed to generate active PO either. Thus, SPHs cannot generate PO activity by simply binding to cleaved proPO. M. sexta proPO activation requires active PAP-1 and SPHs at the same time-one for limited proteolysis and the other as a cofactor, perhaps. Gel filtration chromatography and native gel electrophoresis revealed the PAP-SPH, proPO-PAP, and SPH-proPO associations, essential for generating high Mr, active PO at the site of infection.  相似文献   

8.
The proteolytic activation of prophenoloxidase (proPO) is a critical defense mechanism in insects and crustaceans. We have isolated three prophenoloxidase-activating proteinases (PAPs) from cuticular extracts or hemolymph of Manduca sexta pharate pupae, which are negatively regulated by serpin-1J and serpin-3. To test if other serpins may also inhibit the PAPs, we fractionated the induced hemolymph by ammonium sulfate precipitation, gel filtration, and lectin affinity chromatography. A 47 kDa protein, designated M. sexta serpin-6, was identified in concanavalin A-bound fractions, which formed an SDS-stable complex with PAP-3. This inhibitor, not recognized by the serpin-1 or serpin-3 antibodies, was further purified on HPLC anion exchange and hydroxylapatite columns. The molecular mass and isoelectric point of serpin-6 were found to be 46,710 +/- 10 Da and 5.4. While its amino terminus was blocked, we obtained five internal peptide sequences, one of which is highly similar to M. sexta serpins-1, -2, and -3. Serpin-6 strongly inhibited PAP-3 but not PAP-1 or PAP-2, suggesting that the proPO activation by PAPs is differentially regulated by multiple serpins. When included in the reaction mixture containing proPO, PAP-3, and its cofactor, serpin-6 efficiently blocked the cleavage activation of proPO.  相似文献   

9.
Activation of prophenoloxidase (proPO) in insects is a defense mechanism against intruding microorganisms and parasites. Pattern recognition molecules induce activation of an enzymatic cascade involving serine proteinases, which leads to the conversion of proPO to active phenoloxidase (PO). Phenolic compounds produced by pPO-activation are toxic to invaders. Here, we describe the isolation of a venom protein from the parasitoid, Cotesia rubecula, injected into the host, Pieris rapae, which is homologous to serine proteinase homologs (SPH). The data presented here indicate that the protein interferes with the proteolytic cascade, which under normal circumstances leads to the activation of proPO and melanin formation.  相似文献   

10.
Proteolytic activation of prophenoloxidase in insects is a component of the host defense system against invading pathogens and parasites. We have purified from hemolymph of the tobacco hornworm, Manduca sexta, a new serine proteinase that cleaves prophenoloxidase. This enzyme, designated prophenoloxidase-activating proteinase-2 (PAP-2), differs from another PAP, previously isolated from integuments of the same insect (PAP-1). PAP-2 contains two clip domains at its amino terminus and a catalytic domain at its carboxyl terminus, whereas PAP-1 has only one clip domain. Purified PAP-2 cleaved prophenoloxidase at Arg(51) but yielded a product that has little phenoloxidase activity. However, in the presence of two serine proteinase homologs, active phenoloxidase was generated at a much higher level, and it formed covalently linked, high molecular weight oligomers. The serine proteinase homologs associate with a bacteria-binding lectin in M. sexta hemolymph, indicating that they may be important for ensuring that the activation of prophenoloxidase occurs only in the vicinity of invading microorganisms. PAP-2 mRNA was not detected in naive larval fat body or hemocytes, but it became abundant in these tissues after the insects were injected with bacteria.  相似文献   

11.
Extracellular serine proteinase cascades stimulate prophenoloxidase (proPO) activation and antimicrobial peptide production in insect innate immune responses. Serpins in plasma regulate such cascades by selective inhibition of proteinases, in reactions which result in the formation of covalent serpin-proteinase complexes. We carried out experiments to identify plasma proteinases that are inhibited by Manduca sexta serpin-3, an immune-inducible serpin known to regulate proPO activation. Immunoaffinity chromatography, using antiserum to serpin-3, yielded serpin-3 complexes with proteinases identified by immunoblot analysis as prophenoloxidase-activating proteinase (PAP)-1, PAP-2, PAP-3, and hemolymph proteinase 8 (HP8). HP8 can cleave and activate the Toll ligand, Spätzle, leading to synthesis of antimicrobial peptides. Analysis by mass spectrometry of tryptic peptides derived from the serpin-3 complexes confirmed the presence of PAP-1, PAP-3, and HP8. Purified recombinant serpin-3 and active HP8 formed an SDS-stable complex in vitro. Identification of serpin-3-proteinase complexes in plasma provides insight into proteinase targets of serpin-3 and extends the understanding of serpin/proteinase function in the immune response of M. sexta.  相似文献   

12.
Upon wounding or infection, a serine proteinase cascade in insect hemolymph leads to prophenoloxidase (proPO) activation and melanization, a defense response against invading microbes. In the tobacco hornworm Manduca sexta, this response is initiated via hemolymph proteinase 14 (HP14), a mosaic protein that interacts with bacterial peptidoglycan or fungal beta-1,3-glucan to autoactivate. In this paper, we report the expression, purification, and functional analysis of M. sexta HP21 precursor, an HP14 substrate similar to Drosophila snake. The recombinant proHP21 is a 51.1 kDa glycoprotein with an amino-terminal clip domain, a linker region, and a carboxyl-terminal serine proteinase domain. HP14, generated by incubating proHP14 with beta-1,3-glucan and beta-1,3-glucan recognition protein-2, activated proHP21 by limited proteolysis between Leu(152) and Ile(153). Active HP21 formed an SDS-stable complex with M. sexta serpin-4, a physiological regulator of the proPO activation system. We determined the P1 site of serpin-4 to be Arg(355) and, thus, confirmed our prediction that HP21 has trypsin-like specificity. After active HP21 was added to the plasma, there was a major increase in PO activity. HP21 cleaved proPO activating proteinase-2 precursor (proPAP-2) after Lys(153) and generated an amidase activity, which activated proPO in the presence of serine proteinase homolog-1 and 2. In summary, we have discovered and reconstituted a branch of the proPO activation cascade in vitro: beta-1,3-glucan recognition--proHP14 autoactivation--proHP21 cleavage--PAP-2 generation--proPO activation--melanin formation.  相似文献   

13.
Phenoloxidase (PO)-catalyzed reactions are crucial to the survival of insects after a pathogen or parasite infection. In Manduca sexta, active PO is generated from its precursor by a prophenoloxidase activating proteinase (PAP) in the presence of non-catalytic serine proteinase homologs (SPHs). The PAP and SPHs, located at the ends of a branched proteinase cascade, also require limited proteolysis to become functional. While the processing enzyme of M. sexta proPAP-2 and proPAP-3 is known, we are now investigating the proteolytic activation of proSPH-1 and proSPH-2. Here, we report the development of a series of Bac-to-Bac plasmid vectors for co-expression, secretion, and affinity purification of proSPH-1 and proSPH-2 from insect cells infected by one baculovirus. The purified proteins were characterized and used as substrates in a search for their activating enzymes in plasma of the larvae injected with microorganisms. Proteolytic processing occurred after the proSPHs had been incubated with hydroxyapatite or gel filtration column fractions. The cleaved proteins were active as a cofactor for proPO activation by PAP, and coexistence of SPH-1 and SPH-2 is essential for manifesting the auxiliary effect.  相似文献   

14.
Insects are important vectors of diseases with remarkable immune defense capabilities. Hymenopteran endoparasitoids are adapted to overcome the host defense system and, therefore, are useful sources of immune-suppressing proteins. Not much is known about venom proteins in endoparasitoids, especially those that have a functional relationship with polydnaviruses (PDVs). Here, we describe the isolation and characterization of a small venom protein (Vn4.6) from an endoparasitoid, Cotesia rubecula, which interferes with the activation of the host hemolymph prophenoloxidase. The coding region for Vn4.6 is located upstream in the opposite direction of a gene coding for a C. rubecula PDV-protein (Crp32).  相似文献   

15.
Early on, we reported the partial purification of prophenoloxidase-activating proteinase-1 (PAP-1) from the tobacco hornworm, Manduca sexta [Proc. Natl. Acad. Sci. USA 95 (1998) 12220]. PAP-1 requires an auxiliary factor for generating active phenoloxidase (PO) [Insect Biochem. Mol. Biol. 33 (2003) 197; Insect Biochem. Mol. Biol. 34 (2004) 731]. To further characterize their roles in the proteolytic activation of prophenoloxidase (proPO), we purified PAP-1 to near homogeneity by hydroxylapatite, dextran sulfate, gel filtration, and lectin affinity chromatography. With 2.4 x 10(3)-fold purification and 20% yield, we obtained 63 microg PAP-1 from about 120 M. sexta prepupal cuticles (approximately 400 g). The purified glycoprotein (Mr=39,810+/-20; pI=5.6) had the highest amidase activity at pH 8.0 and a low salt concentration. The optimal conditions for proPO activation by PAP-1 and SPHs were: pH 8.0-8.4, PAP:SPH=1.5:1, and 0-10 degrees C for 40-50 min. While PAP-1 and SPHs are reasonably heat stable, PO activity generated after 1h incubation was lower at 20 or 30 degrees C than 0-10 degrees C because activated PO was unstable at a higher temperature. The KMs of PAP-1 toward IEARpNA and proPO were 201+/-18 microM and 16.6+/-3.0 microg/ml, respectively, and the absence of SPHs did not significantly affect KM for the synthetic substrate. PO activity and proPO cleavage were reduced in reaction mixtures containing the same amounts of proPO, PAP-1, and SPHs but increasing concentrations of NaCl. Ionic strength of the reaction buffer may reduce proPO-PAP-SPH interactions, proPO processing, and PO assembly.  相似文献   

16.
The biochemical basis of antimicrobial responses in Manduca sexta   总被引:1,自引:0,他引:1  
Innate immunity is essential for the wellbeing of vertebrates and invertebrates. Key components of this defense system include pattern recognition receptors that bind to infectious agents, extra-and intra-cellular proteins that relay signals, as well as molecules and cells that eliminate pathogens. We have been studying the defense mechanisms in a biochemical model insect, Manduca sexta. In this insect, hemolin, peptidoglycan recognition proteins, β-1,3-glucan recognition proteins and C-type lectins detect microbial surface molecules and induce immune responses such as phagocytosis, nodulation, encapsulation, melanization and production of antimicrobial peptides. Some of these responses are mediated by extracellular serine proteinase pathways. The proteolytic activation of prophenoloxidase (proPO) yields active phenoloxidase (PO) which catalyzes the formation of quinones and melanin for wound healing and microbe killing. M. sexta hemolymph proteinase 14 (HP 14) precursor interacts with peptidoglycan or β-1,3-glucan, autoactivates, and leads to the activation of other HPs including HP21 and proPO-activating proteinases (PAPs). PAP-1, -2 and -3 cut proPO to generate active PO in the presence of two serine proteinase homologs. Inhibition of the proteinases by serpins and association of the proteinase homologs with bacteria ensure a localized defense reaction. M. sexta HP1, HP6, HP8, HP17 and other proteinases may also participate in proPO activation or processing of spatzle and plasmatocyte spreading peptide.  相似文献   

17.
Analogous to human thrombin, prophenoloxidase-activating proteinase (PAP) is a terminal enzyme of a serine proteinase cascade in the tobacco hornworm Manduca sexta. In order to purify and study the activating enzyme for PAP from this insect, we produced the zymogen of PAP (proPAP) in a bacterial expression system. The affinity-purified protein was then used as an antigen to generate a specific rabbit antiserum. Immunoblot analysis indicated that the proPAP was present at a low level in Manduca larval hemolymph, but was induced by six- to eightfold in larvae that had been injected with Escherichia coli or Micrococcus lysodeikticus. To produce the native proenzyme for functional analyses, we constructed a recombinant baculovirus to infect Spodoptera frugiperda Sf21 cells. ProPAP was secreted into the medium at a low concentration of approximately 0.37 mg/liter under the optimal conditions. We then developed a simple, efficient scheme to enrich and purify this protein, which involves two lectin affinity and one HPLC ion-exchange chromatographic steps. Immunoblot analysis following SDS-polyacrylamide gel electrophoresis indicated that the recombinant proPAP is nearly identical in mobility to the zymogen from Manduca hemolymph. After the purified proPAP was added to the larval hemolymph, it was readily activated by an unknown proteinase in the presence of M. lysodeikticus.  相似文献   

18.
Maternal factors introduced into host insects by endoparasitoid wasps are usually essential for successful parasitism. This includes polydnaviruses (PDVs) that are produced in the reproductive organ of female hymenopteran endoparasitoids and are injected, together with venom proteins, into the host hemocoel at oviposition. Inside the host, PDVs enter various tissue cells and hemocytes where viral genes are expressed, leading to developmental and physiological alterations in the host, including the suppression of the host immune system. Although several studies have shown that some PDVs are only effective when accompanied by venom proteins, there is no report of an active venom ingredient(s) facilitating PDV infection and/or gene expression. In this study, we describe a novel peptide (Vn1.5) isolated from Cotesia rubecula venom that is required for the expression of C. rubecula bracoviruses (CrBVs) in host hemocytes (Pieris rapae), although it is not essential for CrBV entry into host cells. The peptide consists of 14 amino acids with a molecular mass of 1598 Da. In the absence of Vn1.5 or total venom proteins, CrBV genes are not expressed in host cells and did not cause inactivation of host hemocytes.  相似文献   

19.
Insect immune responses include prophenoloxidase (proPO) activation and Toll pathway initiation, which are mediated by serine proteinase cascades and regulated by serpins. Manduca sexta hemolymph proteinase-6 (HP6) is a component of both pathways. It cleaves and activates proPO activating proteinase 1 (PAP1) and hemolymph proteinase-8 (HP8), which activates proSpätzle. Inhibitors of HP6 could have the capability of regulating both of these innate immune proteinase cascade pathways. Covalent complexes of HP6 with serpin-4 and serpin-5 were previously isolated from M. sexta plasma using immunoaffinity chromatography with serpin antibodies. We investigated the inhibition of purified, recombinant HP6 by serpin-4 and serpin-5. Both serpin-4 and serpin-5 formed SDS-stable complexes with HP6 in vitro, and they inhibited the activation of proHP8 and proPAP1. Serpin-5 inhibited HP6 more efficiently than did serpin-4. Injection of serpin-5 into larvae resulted in decreased bacteria-induced antimicrobial activity in hemolymph and reduced the bacteria-induced expression of attacin, cecropin and hemolin genes in fat body. Injection of serpin-4 had a weaker effect on antimicrobial peptide expression. These results indicate that serpin-5 may regulate the activity of HP6 to modulate proPO activation and antimicrobial peptide production during immune responses of M. sexta.  相似文献   

20.
In Manduca sexta, pathogen recognition triggers a branched serine proteinase cascade which generates active phenoloxidase (PO) in the presence of a proPO-activating proteinase (PAP) and two noncatalytic serine proteinase homologs (SPHs). PO then catalyzes the production of reactive compounds for microbe killing, wound healing, and melanin formation. In this study, we discovered that a minute amount of PAP1 (a final component of the proteinase pathway) caused a remarkable increase in PO activity in plasma from na?ve larvae, which was significantly higher than that from the same amounts of PAP1, proPO and SPHs incubated in vitro. The enhanced proPO activation concurred with the proteolytic activation of HP6, HP8, PAP1, SPH1, SPH2 and PO precursors. PAP1 cleaved proSPH2 to yield bands with mobility identical to SPH2 generated in vivo. PAP1 partially hydrolyzed proHP6 and proHP8 at a bond amino-terminal to the one cut in the PAP1-added plasma. PAP1 did not directly activate proPAP1. These results suggest that a self-reinforcing mechanism is built into the proPO activation system and other plasma proteins are required for cleaving proHP6 and proHP8 at the correct site to strengthen the defense response, perhaps in the early stage of the pathway activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号