首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradation of 2,4,6-trinitrotoluene (TNT) proceeds through several different metabolic pathways. However, the reaction steps which are considered rate-controlling have not been fully determined. Glycolysis and other biological pathways contain biochemical reactions which are acutely rate-limiting due to enzyme control. These rate-limiting steps also have large negative Gibbs free energy changes. Because xenobiotic compounds such as TNT can be used by biological systems as nitrogen, carbon, and energy sources, it is likely that their degradation pathways also contain acutely rate-limiting steps. Identification of these rate-controlling reactions will enhance and better direct genetic engineering techniques to increase specific enzyme levels.This article identifies likely rate-controlling steps (or sets of steps) in reported TNT biodegradation pathways by estimating the Gibbs free energy change for each step and for the overall pathways. The biological standard Gibbs free energy change of reaction was calculated for each pathway step using a group contribution method specifically tailored for biomolecules. The method was also applied to hypothetical "pathways" constructed to mineralize TNT using several different microorganisms. Pathways steps that have large negative Gibbs free energy changes are postulated to be potentially rate-controlling. The microorganisms which utilize degradation pathways with the largest overall (from TNT to citrate) negatiave Gibbs free energy changes were also determined. Such microorganisms can extract more energy from the starting substrate and are thus assumed to have a competitive advantage over other microorganisms. Results from this modeling-based research are consistent with much experimental work available in the literature. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
3.
4.
5.
Plants, as predominantly sessile organisms, have evolved complex detoxification pathways to deal with a diverse range of toxic chemicals. The elasticity of this stress response system additionally enables them to tackle relatively recently produced, novel, synthetic pollutants. One such compound is the explosive 2,4,6-trinitrotoluene (TNT). Large areas of soil and groundwater are contaminated with TNT, which is both highly toxic and recalcitrant to degradation, and persists in the environment for decades. Although TNT is phytotoxic, plants are able to tolerate low levels of the compound. To identify the genes involved in this detoxification process, we used microarray analysis and then subsequently characterized seven uridine diphosphate (UDP) glycosyltransferases (UGTs) from Arabidopsis thaliana (Arabidopsis). Six of the recombinantly expressed UGTs conjugated the TNT-transformation products 2- and 4-hydroxylaminodinitrotoulene, exhibiting individual bias for either the 2- or the 4-isomer. For both 2- and 4-hydroxylaminodinitrotoulene substrates, two monoglucose conjugate products, confirmed by HPLC-MS-MS, were observed. Further analysis indicated that these were conjugated by either an O- or C-glucosidic bond. The other major compounds in TNT metabolism, aminodinitrotoluenes, were also conjugated by the UGTs, but to a lesser extent. These conjugates were also identified in extracts and media from Arabidopsis plants grown in liquid culture containing TNT. Overexpression of two of these UGTs, 743B4 and 73C1, in Arabidopsis resulted in increases in conjugate production, and enhanced root growth in 74B4 overexpression seedlings. Our results show that UGTs play an integral role in the biochemical mechanism of TNT detoxification by plants.  相似文献   

6.
7.
8.
9.
10.
Regulation of the Arabidopsis transcriptome by oxidative stress   总被引:34,自引:0,他引:34  
  相似文献   

11.
The formation of TNT-derived conjugates was investigated in hairy root tissue cultures of Catharanthus roseus and in aquatic plant systems of Myriophyllum aquaticum. The temporal profiles of four TNT-derived conjugates, TNT-1, 2A-1, TNT-2 and 4A-1, were determined over 3 to 16-day exposure durations. When axenic C. roseus roots were exposed separately to 2,4,6 trinitrotoluene, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene, the array and levels of conjugates varied. Exposure of axenic roots to either 4-amino-2,6-dinitrotoluene or 2-amino-4,6-dinitrotoluene resulted in the formation of only 4A-1 and 2A-1, respectively, and not TNT-1 and TNT-2. However, amendment of previously unexposed roots with TNT produced all four conjugates. The conjugates were preferentially accumulated within the biomass phase of root cultures. Significantly, conjugates TNT-1 and TNT-2 were observed in the biomass phase of intact M. aquaticum plants exposed to TNT. The results clearly indicate the presence of common TNT transformation products in two diverse plants species and tissue type. The distribution of conjugates formed via monoamine derivatives of TNT, however, may be a function of several factors, including the starting xenobiotic type and/or level. Initial bulk rate constants for disappearance of 2,4,6 trinitrotoluene, 2-amino-4,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene were also determined. Their magnitude followed the order: TNT >> 4-A-2,6-DNT > 2-A-4,6-DNT.  相似文献   

12.
Industrialization and the quest for a more comfortable lifestyle have led to increasing amounts of pollution in the environment. To address this problem, several biotechnological applications aimed at removing this pollution have been investigated. Among these pollutants are xenobiotic compounds such as polynitroaromatic compounds--recalcitrant chemicals that are degraded slowly. Whereas 2,4,6-trinitrophenol (TNP) can be mineralized and converted into carbon dioxide, nitrite and water, 2,4,6-trinitrotoluene (TNT) is more recalcitrant--although several microbes can use it as a nitrogen source. The most effective in situ biotreatments for TNT are the use of bioslurry (which can be preceded by an abiotic step) and phytoremediation. Phytoremediation can be enhanced by using transgenic plants alone or together with microbes.  相似文献   

13.
Biological Degradation of 2,4,6-Trinitrotoluene   总被引:19,自引:0,他引:19       下载免费PDF全文
Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve mineralization or reduction of TNT and immobilization of its amino derivatives on humic material. These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done.  相似文献   

14.
Basic knowledge of the plant transformation pathways and toxicity of 2,4-dinitrotoluene (2,4-DNT) will assist in the design and assessment of a phytoremediation strategy. This study presents the toxicity and fate of 2,4-DNT and gene expression in response to 2,4-DNT exposure using the model plant Arabidopsis thaliana, an increasingly popular system for genetic and biochemical studies of phytotransformation of explosives. From the results of biomass and root growth assays for toxicity, 2,4-DNT was toxic to the plants at concentrations as low as 1 mg/L. In the uptake study, 95% of the initial 2,4-DNT was removed by 15-day-old seedlings from liquid media regardless of the initial 2,4-DNT concentrations while 30% accounted for the adsorption to the autoclaved plant materials. The mass balance was over 86% using [U-14C]2,4-DNT, and the mineralization by the plants was less than 1% under sterile conditions during 14 days of exposure. The percentage of the bound radioactivity increased from 49% to 72% of the radioactivity in the plants, suggesting transformed products of 2,4-DNT may be incorporated into plant tissues such as lignin and cellulose. Monoaminonitrotoluene isomers and unknown metabolites with short retention times were detected as transformed products of 2,4-DNT by the plants. Most (68%) of the radioactivity taken up by the plants was in the root tissues in nonsterile hydroponic cultures. Glutathione and expression of related genes (GSH1 and GSH2) in plants exposed to 2,4-DNT were 1.7-fold increased compared to untreated plants. Genes of a glutathione S-transferase and a cytochrome P450, which were induced by 2,4,6-trinitrotoluene exposure in previous studies, were upregulated by 10- and 8-fold, respectively. The application of phytoremediation and the development of transgenic plants for 2,4-DNT may be based on TNT phytotransformation pathway characteristics because of the similar fate and gene expression in plants.  相似文献   

15.
Biological degradation of 2,4,6-trinitrotoluene.   总被引:2,自引:0,他引:2  
Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve mineralization or reduction of TNT and immobilization of its amino derivatives on humic material. These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done.  相似文献   

16.
The uptake and fate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by hybrid poplars in hydroponic systems were compared and exposed leaves were leached with water to simulate potential exposure pathways from groundwater in the field. TNT was removed from solution more quickly than nitramine explosives. Most of radioactivity remained in root tissues for 14C-TNT, but in leaves for 14C-RDX and 14C-HMX. Radiolabel recovery for TNT and HMX was over 94%, but that of RDX decreased over time, suggesting a loss of volatile products. A considerable fraction (45.5%) of radioactivity taken up by whole plants exposed to 14C-HMX was released into deionized water, mostly as parent compound after 5 d of leaching. About a quarter (24.0%) and 1.2% were leached for RDX and TNT, respectively, mostly as transformed products. Leached radioactivity from roots was insignificant in all cases (< 2%). This is the first report in which small amounts of transformation products of RDX leach from dried leaves following uptake by poplars. Such behavior for HMX was reported earlier and is reconfirmed here. All three compounds differ substantially in their fate and transport during the leaching process.  相似文献   

17.
The yeast strain Geotrichum candidum AN-Z4 isolated from an anthropogenically polluted site was able to transform 2,4,6-trinitrotoluene (TNT) via the formation of unstable intermediate hydride Meisenheimer complexes with their subsequent destruction and accumulation of nitrite and nitrate ions as the end mineral forms of nitrogen. Aeration of the medium promoted more profound destruction of this xenobiotic by the strain G. candidum AN-Z4 than static conditions. The yeast strain was shown to produce citrate, succinate, and isocitrate, which sharply acidified the medium and influenced the TNT destruction. Two possible pathways of TNT biodegradation were confirmed experimentally: (1) via the destruction of the TNT-monohydride complex (3-H-TNT) and (2) via the destruction of one protonated TNT-dihydride complex (3,5-2H-TNT · H+). The strain G. candidum AN-Z4, due to its ability for TNT degradation, may be promising for bioremediation of TNT-contaminated soil and water.  相似文献   

18.
19.
Protein kinases play a central role in signal transduction pathways in eukaryotes. A highly conserved group of kinases, termed mitogen-activated-protein kinases (MAPKs) was shown to mediate many diverse stress responses. In plants, MAPKs were shown to function in resistance responses to many biotic and abiotic stresses. Here, we show that exposure of Arabidopsis roots to hydrogen peroxide or to nitric oxide resulted in rapid activation of protein kinases in the shoots that exhibited MAPK properties. The same pattern of kinases was induced by direct injection of these compounds into leaves, indicating accurate long-distance transmission of H2O2 and NO signals. These results are important for the understanding of redox signal transmission from the rhizosphere throughout the plant.  相似文献   

20.
Jasmonic acid (JA) and methyl jasmonate (MeJA), collectively termed jasmonates, are ubiquitous plant signalling compounds. Several types of stress conditions, such as wounding and pathogen infection, cause endogenous JA accumulation and the expression of jasmonate-responsive genes. Although jasmonates are important signalling components for the stress response in plants, the mechanism by which jasmonate signalling contributes to stress tolerance has not been clearly defined. A comprehensive analysis of jasmonate-regulated metabolic pathways in Arabidopsis was performed using cDNA macroarrays containing 13516 expressed sequence tags (ESTs) covering 8384 loci. The results showed that jasmonates activate the coordinated gene expression of factors involved in nine metabolic pathways belonging to two functionally related groups: (i) ascorbate and glutathione metabolic pathways, which are important in defence responses to oxidative stress, and (ii) biosynthesis of indole glucosinolate, which is a defence compound occurring in the Brassicaceae family. We confirmed that JA induces the accumulation of ascorbate, glutathione and cysteine and increases the activity of dehydroascorbate reductase, an enzyme in the ascorbate recycling pathway. These antioxidant metabolic pathways are known to be activated under oxidative stress conditions. Ozone (O3) exposure, a representative oxidative stress, is known to cause activation of antioxidant metabolism. We showed that O3 exposure caused the induction of several genes involved in antioxidant metabolism in the wild type. However, in jasmonate-deficient Arabidopsis 12-oxophytodienoate reductase 3 (opr3) mutants, the induction of antioxidant genes was abolished. Compared with the wild type, opr3 mutants were more sensitive to O3 exposure. These results suggest that the coordinated activation of the metabolic pathways mediated by jasmonates provides resistance to environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号