首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices α1 and α2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the α1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.  相似文献   

2.
The midgut proteases of the Bacillus thuringiensis resistant and susceptible populations of the diamondback moth, Plutella xylostella L. were characterized by using protease specific substrates and inhibitors. The midgut contained trypsin-like proteases of molecular weights of 97, 32, 29.5, 27.5, and 25 kDa. Of these five proteases, 29.5 kDa trypsin-like protease was the most predominant in activation of protoxins of Cry1Aa and Cry1Ab. The activation of Cry1Ab protoxin by midgut protease was fast (T(1/2) of 23-24 min) even at a protoxin:protease ratio of 250:1. The protoxin activation appeared to be multi-step process, and at least seven intermediates were observed before formation of a stable toxin of about 57.4 kDa from protoxin of about 133 kDa. Activation of Cry1Aa was faster than that of Cry1Ab on incubation of protoxins with midgut proteases and bovine trypsin. The protoxin and toxin forms of Cry proteins did not differ in toxicity towards larvae of P. xylostella. The differences in susceptibility of two populations to B. thuringiensis Cry1Ab were not due to midgut proteolytic activity. Further, the proteolytic patterns of Cry1A protoxins were similar in the resistant as well as susceptible populations of P. xylostella.  相似文献   

3.
The proteolytic processing of native Cry1Ab toxin by midgut extracts from the Mediterranean corn borer, Sesamia nonagrioides, takes place in successive steps. Several cuts occur until a 74 kDa protein is obtained; this is further digested to give rise to an active form of 69 kDa, which can be again processed to fragments of 67, 66 and 43 kDa. We have shown that three different trypsins (TI, TIIA and TIII) purified from the S. nonagrioides midgut were able to digest Cry1Ab protoxin to obtain the active form of 69 kDa. Interestingly, TI and TIII further hydrolyzed the 69 kDa protein to a fragment of slightly lower molecular mass (67 kDa), while TIIA was able to continue digestion to give fragments of 46 and 43 kDa. These results contrast with those obtained using bovine trypsin, in which the main product of Cry1Ab digestion is a 69 kDa protein. The digestion of the toxin with a "non-trypsin" fraction from S. nonagrioides midgut lumen, mostly containing chymotrypsins and elastases and free of trypsin-like activity, resulted in a different processing pattern, yielding fragments of 79, 77, 71, 69 and 51 kDa. Our results indicate that trypsins and other proteases are involved in the first steps of protoxin processing, but trypsins play the most important role in obtaining the 74 and 69 kDa proteins. All the digestion products, including the proteins of 46 and 43 kDa obtained from the digestion of Cry1Ab by TIIA, were toxic to neonate larvae, indicating that none of the tested proteases contribute to toxin degradation in a significant manner.  相似文献   

4.
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60–65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices 1 and 2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the 1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.  相似文献   

5.
Bt WZ-9 strain, containing a single Cry7Ab3 toxin, had effective insecticidal activity against larvae of Henosepilachna vigintioctomaculata. By incubation with larvae midgut homogenate and trypsin in vitro, 130 kDa Cry7Ab3 protoxin was degraded into the ~75 kDa proteinase-resistant fragments. In vivo analysis, 130 kDa Cry7Ab3 protoxin was also processed into ~75 kDa fragment. Histopathological observations indicated that Cry7Ab3 ingestion by H. vigintioctomaculata larvae causes acceleration in the blebbing of the midgut epithelium cells into the gut lumen and eventual lysis of the epithelium cells resulting in larval death. A ligand blotting experiment demonstrated that Cry7Ab3 toxin bound a 220 kDa BBMV protein. This receptor protein was identified as cadherin by matrix assisted laser desorption-time of flight-mass spectrometry (MALDI-TOF-MS). The cadherin protein may be the receptor of Cry7Ab3. The data obtained may contribute to a better understanding of the mechanism of Cry7Ab3 toxin against H. vigintioctomaculata larvae.  相似文献   

6.
Earlier studies have shown that larvae of the green lacewing predator Chrysoperla carnea are negatively affected when preying on lepidopteran larvae that had been fed with transgenic maize expressing the cry1Ab gene from Bacillus thuringiensis. To test whether the observed effects were directly caused by the Cry1Ab toxin, we have developed a bioassay which allows us to feed high concentrations of the toxin directly to the predator. The results of these feeding studies show no direct toxic effect of Cry1Ab on C. carnea larvae. The amount of toxin ingested by first instar C. carnea in the present study was found to be a factor 10,000 higher than the concentration ingested when feeding on Bt-reared lepidopteran larvae, a treatment that was previously shown to have a negative impact on the predator. In addition, feeding first instar C. carnea with the Cry1Ab toxin did not affect the utilisation of subsequently provided prey. Furthermore, the quality of the prey provided to first instars did not affect the sensitivity of second and third instar C. carnea to the Bt-toxin. The presented results strongly suggest that C. carnea larvae are not sensitive to Cry1Ab and that earlier reported negative effects of Bt-maize were prey-quality mediated rather than direct toxic effects. These results, together with the fact that lepidopteran larvae are not regarded as an important prey for C. carnea in the field, led us to conclude that transgenic maize expressing Cry1Ab poses a negligible risk for this predator.  相似文献   

7.
The investigation of Neoseiulus cucumeris in the context of the ecological risk assessment of insect resistant transgenic plants is of particular interest as this omnivorous predatory mite species is commercially available and considered important for biological control. In a multitrophic feeding experiment we assessed the impact of Bt maize on the performance of N. cucumeris when offered spider mites (Tetranychus urticae) reared on Bt (Bt11, Syngenta) or non-Bt maize (near isogenic line) and Bt or non-Bt maize pollen as a food source. Various parameters including mortality, development time, oviposition rate were measured. Spider mites were used as a prey for N. cucumeris, since these herbivores are known to contain similar levels of Cry1Ab toxin, when reared on Bt maize, as those found in the transgenic leaf material. In contrast, toxin levels in pollen of this transgenic cultivar are very low. No differences in any of the parameters were found when N. cucumeris was fed with spider mites reared on Bt and non-Bt maize. Pollen was shown to be a less suitable food source for this predator as compared to spider mites. Moreover, subtle effects on female N. cucumeris (9% longer development time and 17% reduced fecundity) were measured when fed with pollen originating from Bt maize as compared to non-Bt maize pollen. Our findings indicate that the predatory mite N. cucumeris is not sensitive to the Cry1Ab toxin as no effects could be detected when offered Bt-containing spider mites, and that the effects found when fed with Bt maize pollen can be assigned to differences in nutritional quality of Bt and non-Bt maize pollen. The significance of these findings is discussed with regard to the ecological relevance for risk assessment of transgenic plants.  相似文献   

8.
Toxicity of insecticidal endotoxins produced by Bacillus thuringiensis correlates with the presence of specific proteins in the midgut of susceptible larvae. This study was aimed at identifying and purifying Cry 1A binding proteins from Helicoverpa armigera, an important crop pest of India. B. thuringiensis strain HD 73 which produces Cry 1Ac toxin, specific for H. armigera was used in this study. Toxin-binding proteins from insect larvae were detected by employing a toxin overlay assay using both radiolabelled as well as unlabelled toxin. Detergent-solubilized fractions of larval brush border membranes were subjected to soybean agglutinin (SBA) chromatography, from which N-acetylgalactosamine (NAG)-containing proteins were eluted. Analysis of the SBA-purified proteins indicated that four proteins of approximately 97, 120, 170 and 200 kDa could bind to Cry 1Ac toxin, and three proteins of 97, 170 and 200 kDa proteins could bind to Cry 1Ab. Furthermore, in the presence of excess Cry 1Ab toxin, the labelled Cry 1Ac toxin could bind only to 170 and 200 kDa proteins, implying that Cry 1Ab can also bind the 120 kDa protein. This study therefore demonstrates that in H. armigera, midgut proteins of 97, 120, 170 and 200 kDa have the ability to bind both Cry 1Ab and Cry 1Ac. Furthermore, while the 170 and 200 kDa proteins have higher affinity for Cry 1Ac, the 97 kDa has higher affinity for Cry1 Ab. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
As a part of a risk assessment procedure, the impact of Bt maize expressing Cry1Ab toxin on the thrips Frankliniella tenuicornis (Uzel) (Thysanoptera: Thripidae) was investigated, and the potential risks for predators feeding on thrips on Bt maize were evaluated. The effects of Bt maize on F. tenuicornis were assessed by measuring life‐table parameters when reared on Bt and non‐Bt maize. The content of Cry1Ab toxin in different stages of F. tenuicornis reared on Bt maize and the persistence of the toxin in adults where determined in order to evaluate the possible exposure of predators when feeding on thrips. In addition, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) was used as a model predator to assess how the behaviour of prey and predator may influence the exposure of a natural enemy to the Bt toxin. Life‐table parameter results showed that F. tenuicornis was not affected when it was reared on Bt maize. This indicates that the potential for prey quality‐mediated effects on predators is low. Bt content was highest in thrips larvae and adults, and negligible in the non‐feeding prepupal and pupal stages. The persistence of the Cry1Ab toxin in adult F. tenuicornis was short, resulting in a decrease of 97% within the first 24 h. Predation success by young C. carnea larvae varied among the thrips stages, indicating that exposure of predators to Bt toxin can additionally depend on the prey stage. When combining the current knowledge of the susceptibility of major thrips predators with our findings showing no potential for prey quality‐mediated effects, relatively low toxin content in thrips as well as short persistence, it can be concluded that the risks for predators when feeding on thrips in or next to Bt maize fields are negligible.  相似文献   

10.
Bt maize cultivars based on the event MON810 (expressing Cry1Ab) have shown high efficacy for controlling corn borers. However, their efficiency for controlling some secondary lepidopteran pests such as Mythimna unipuncta has been questioned, raising concerns about potential outbreaks and its economic consequences. We have selected a resistant strain (MR) of M. unipuncta, which is capable of completing its life cycle on Bt maize and displays a similar performance when feeding on both Bt and non-Bt maize. The proteolytic activation of the protoxin and the binding of active toxin to brush border membrane vesicles were investigated in the resistant and a control strain. A reduction in the activity of proteolytic enzymes, which correlates with impaired capacity of midgut extracts to activate the Cry1Ab protoxin has been observed in the resistant strain. Moreover, resistance in larvae of the MR strain was reverted when treated with Cry1Ab toxin activated with midgut juice from the control strain. All these data indicate that resistance in the MR strain is mediated by alteration of toxin activation rather than to an increase in the proteolytic degradation of the protein. By contrast, binding assays performed with biotin labelled Cry1Ab suggest that binding to midgut receptors does not play a major role in the resistance to Bt maize. Our results emphasize the risk of development of resistance in field populations of M. unipuncta and the need to consider this secondary pest in ongoing resistance management programs to avoid the likely negative agronomic and environmental consequences.  相似文献   

11.
Abstract  1. Chrysoperla carnea is an important predatory insect in maize. To assess the ecological effects of Bt-maize, expressing the Cry1Ab protein, on larvae of this predator, the following factors were examined: (1) the performance of three prey herbivores ( Rhopalosiphum padi , Tetranychus urticae , and Spodoptera littoralis ) on transgenic Bt and non‐transgenic maize plants; (2) the intake of the Cry1Ab toxin by the three herbivores; and (3) the effects on C. carnea when fed each of the prey species.
2. The intrinsic rate of natural increase (rm) was used as a measure of performance for R. padi and T. urticae . No difference in this parameter was observed between herbivores reared on Bt or non‐transgenic plants. In contrast, a higher mortality rate and a delay in development were observed in S. littoralis larvae when fed Bt-maize compared with those fed the control maize plants.
3. The ingestion of Cry1Ab toxin by the different herbivores was measured using an immunological assay (ELISA). Highest amounts of Cry1Ab toxin were detected in T. urticae , followed by S. littoralis , and only trace amounts detected in R. padi .
4. Feeding C. carnea with T. urticae , which were shown to contain the Cry1Ab toxin, or with R. padi , which do not ingest the toxin, did not affect survival, development, or weight of C. carnea . In contrast, a significant increase in mortality and a delay in development were observed when predators were fed S. littoralis larvae reared on Bt-maize.
5. A combined interaction of poor prey quality and Cry1Ab toxin may account for the negative effects observed on C. carnea when fed S. littoralis . The relevance of these findings to the ecological risks of Bt-maize on C. carnea is discussed.  相似文献   

12.
Achieving high-level expression of the Bacillus thuringiensis Cry4Aa mosquito-larvicidal protein was demonstrated. The 130-kDa Cry4Aa protoxin was overexpressed as an inclusion body in Escherichia coli under the control of the tac promoter together with the cry4Ba promoter. The solubility of the toxin inclusions in carbonate buffer, pH 10.0, was markedly enhanced at a cultivation temperature of 30 degrees C. Elimination of the tryptic cleavage site at Arg-235 in the loop between helices 5 and 6 still retained the high-level toxicity of E. coli cells expressing the Cry4Aa mutant against Aedes aegypti larvae. Trypsin digestion of the R235Q mutant protoxin produced a protease-resistant fragment of ca. 65kDa. A homogeneous product of the 65-kDa trypsin-treated R203Q protein was obtained after size-exclusion chromatography that would pave the way for the further crystallisation and X-ray crystallographic studies.  相似文献   

13.
To understand the low toxicity of Cry toxins in planthoppers, proteolytic activation of Cry1Ab in Nilaparvata lugens was studied. The proteolytic processing of Cry1Ab protoxin by N. lugens midgut proteases was similar to that by trypsin activated Cry1Ab. The Cry1Ab processed with N. lugens midgut proteases was highly insecticidal against Plutella xylostella. However, Cry1Ab activated either by trypsin or the gut proteases of the brown planthopper showed low toxicity in N. lugens. Binding analysis showed that activated Cry1Ab bound to brush border membrane vesicles (BBMV) from N. lugens at a significantly lower level than to BBMV from P. xylostella.  相似文献   

14.
Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem borer) and Chilo suppressalis (striped stem borer), was evaluated in the laboratory by feeding neonate larvae on artificial diets containing Bt protoxins. The results indicated that Cry1Ca exhibited the highest level of toxicity to both stem borers, with an LC50 of 0.24 and 0.30 μg/g for C. suppressalis and S. inferens, respectively. However, S. inferens was 4-fold lower in susceptibility to Cry1Aa, and 6- and 47-fold less susceptible to Cry1Ab and Cry1Ba, respectively, compared to C. suppressalis. To evaluate interactions among Bt protoxins in stem borer larvae, toxicity assays were performed with mixtures of Cry1Aa/Cry1Ab, Cry1Aa/Cry1Ca, Cry1Ac/Cry1Ca, Cry1Ac/Cry1Ba, Cry1Ab/Cry1Ac, Cry1Ab/Cry1Ba, and Cry1Ab/Cry1Ca at 1:1 (w/w) ratios. All protoxin mixtures demonstrated significant synergistic toxicity activity against C. suppressalis, with values of 1.6- to 11-fold higher toxicity than the theoretical additive effect. Surprisingly, all but one of the Bt protoxin mixtures were antagonistic in toxicity to S. inferens. In mortality-time response experiments, S. inferens demonstrated increased tolerance to Cry1Ab and Cry1Ac compared to C. suppressalis when treated with low or high protoxin concentrations. The data indicate the utility of Cry1Ca protoxin and a Cry1Ac/Cry1Ca mixture to control both stem borer populations.  相似文献   

15.
Cry1Ia and Cry1Aa proteins exhibited toxicities against Prays oleae with LC50 of 189 and 116 ng/cm2, respectively. The ability to process Cry1Ia11 protoxin by trypsin, chymotrypsin and P. oleae larvae proteases was studied and compared to that of Cry1Aa11. After solubilization under high alkaline condition (50 mM NaOH), Cry1Aa11 was converted into a major fragment of 65 kDa, whereas Cry1Ia11 protoxin was completely degraded by P. oleae larvae proteases and trypsin and converted into a major fragment of 70 kDa by chymotrypsin. Using less proteases of P. oleae juice, the degradation of Cry1Ia11 was attenuated. When the solubilization (in 50 mM Na2CO3 pH 10.5 buffer) and activation were combined, Cry1Ia11 was converted into a proteolytic product of 70 kDa after 3 h of incubation with trypsin, chymotrypsin and P. oleae juice. These results suggest that the in vivo solubilization of Cry1Ia11 was assured by larval proteases after a swelling of the corresponding inclusion due to the alkalinity of the larval midgut.  相似文献   

16.
We investigated the effects of a Bt maize hybrid on fitness and digestive physiology of the ground-dwelling predator Poecilus cupreus L., as compared with the near-isogenic hybrid. A tritrophic assay revealed that there was a great decline in the detection of Cry1Ab toxin through the trophic chain, the concentration of the toxin being 945, 349 and 37 ng g−1 of fresh weight in Bt maize leaves, Spodoptera littoralis (Boisduval) larvae and P. cupreus larvae, respectively. Moreover, the toxin was only detected in 8% of the P. cupreus adults collected from fields growing Bt maize. Developmental time of both larvae and pupae of P. cupreus was not adversely affected by the Cry1Ab toxin via fed-prey. To elucidate potential detrimental effects due to a reduction in the quality of the prey, we assessed the digestive proteolytic activities of P. cupreus adults from a laboratory culture and insects collected in commercial Bt and non-Bt maize fields. Field-collected P. cupreus adults had higher proteolytic activities than those reared in the laboratory, whereas no significant differences were found between P. cupreus adults reared on Bt and non-Bt maize fed-S. littoralis or between P. cupreus adults collected in commercial Bt and non-Bt maize fields.  相似文献   

17.
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formation of a 250-kDa toxin oligomer. The cadherin fragment was evaluated for its effect on Cry1Ac toxin-binding and toxicity by ligand blotting, binding assays, and bioassays. The results of ligand blotting and binding assays revealed that the binding of Cry1Ac to H. armigera midgut epithelial cells was reduced under denaturing or native conditions in vitro. Bioassay results indicated that toxicities from Cry1Ac protoxin or activated toxin were reduced in vivo by the H. armigera cadherin fragment. The addition of the cadherin fragment had no effect on Cry2Ab toxicity.  相似文献   

18.
A major concern regarding the deployment of insect resistant transgenic plants is their potential impact on non-target organisms, in particular on beneficial arthropods such as predators. To assess the risks that transgenic plants pose to predators, various experimental testing systems can be used. When using tritrophic studies, it is important to verify the actual exposure of the predator, i.e., the presence of biologically active toxin in the herbivorous arthropod (prey). We therefore investigated the uptake of Cry1Ab toxin by larvae of the green lacewing (Chrysoperla carnea (Stephens); Neuroptera: Chrysopidae) after consuming two Bt maize-fed herbivores (Tetranychus urticae Koch; Acarina: Tetranychidae and Spodoptera littoralis (Boisduval); Lepidoptera: Noctuidae) by means of an immunological test (ELISA) and the activity of the Cry1Ab toxin following ingestion by the herbivores. Moreover, we compared the activity of Cry1Ab toxin produced by Bt maize to that of purified toxin obtained from transformed Escherichia coli, which is recommended to be used in toxicity studies. The activity of the toxin was assessed by performing feeding bioassays with larvae of the European corn borer (Ostrinia nubilalis (Hübner); Lepidoptera: Crambidae), the target pest of Cry1Ab expressing maize. ELISA confirmed the ingestion of Bt toxin by C. carnea larvae when fed with either of the two prey species and feeding bioassays using the target pest showed that the biological activity of the Cry1Ab toxin is maintained after ingestion by both herbivore species. These findings are discussed in the context of previous risk assessment studies with C. carnea. The purified Cry1Ab protein was more toxic to O. nubilalis compared to the plant-derived Cry1Ab toxin when applied at equal concentrations according to ELISA measurements. Possible reasons for these findings are discussed.  相似文献   

19.
Bacillus thuringiensis (Bt) Cry8D insecticidal proteins are unique among Cry8 family proteins in terms of its insecticidal activity against adult Scarab beetles, such as Japanese beetle (Popillia japonica Newman). From the sequence homology with other Bt Cry proteins especially those active against beetles, such as Cry3Aa whose 3D structure is available, the structure of the Cry8D protein has been predicted to be a typical three-domain Cry protein type. In addition, the activation process of Cry8D in gut juice of susceptible insects is presumed to be similar to that of Cry3A (Yamaguchi et al., 2008). In this study, the activation process of Cry8Da in insect gut juice was closely examined. Japanese beetle gut juice proteases digested the 130 kDa Cry8Da protein to produce a 64 kDa protein. This 64 kDa protein was active against both adult and larval Japanese beetle and considered to be an activated toxin. N-terminal sequencing of this 64 kDa protein revealed that the Cry8Da leader sequence consisting of 63 amino acid residues from M1 to F63 was removed. As in the case of Cry3Aa, the proteases further digested the 64 kDa protein to two 8 kDa and 54 kDa fragments. N-terminal amino acid analysis of these smaller fragments indicated that the proteases digested the loop between Alpha Helix (Alpha for short) 3 and Alpha 4. This means that the 8 kDa fragment consists of Alpha 1-3 of Domain I and that the 54 kDa fragment contains the remaining Domain I and full Domain II and Domain III. Size exclusion chromatography and anion exchange chromatography could not separate these 64, 54 and 8 kDa proteins suggesting that the 54 kDa and 8 kDa fragments are still forming the toxin complex equivalent to the 64 kDa protein by size and ionic charge. The sequencing and chromatography results suggest that the gut juice proteases merely nicked the loop between Alpha 3 and Alpha 4. This nicking process appeared to be essential for receptor binding of the Cry8Da toxin. BBMV binding assay revealed that the Cry8Da toxin bound to BBMV preparations from both adult and larval Japanese beetle only after the loop was nicked. Only the 54 kDa fragment bound to the BBMV preparations but not the 64 kDa protein. Ligand blot showed that the protease activated Cry8Da toxin, presumably the 54 kDa fragment, bound to specific BBMV proteins, one or more of those would be receptor(s). The sizes and binding affinities of these Cry8Da-bound proteins of Japanese beetle BBMV differed between larvae and adults.  相似文献   

20.
Cry toxins form lytic pores in the insect midgut cells. The role of receptor interaction in the process of protoxin activation was analyzed. Incubation of Cry1Ab protoxin with a single chain antibody that mimics the cadherin-like receptor and treatment with Manduca sexta midgut juice or trypsin, resulted in toxin preparations with high pore-forming activity in vitro. This activity correlates with the formation of a 250 kDa oligomer that lacks the helix alpha-1 of domain I. The oligomer, in contrast with the 60 kDa monomer, was capable of membrane insertion as judged by 8-anilino-1-naphthalenesulfonate binding. Cry1Ab protoxin was also activated to a 250 kDa oligomer by incubation with brush border membrane vesicles, presumably by the action of a membrane-associated protease. Finally, a model where receptor binding allows the efficient cleavage of alpha-1 and formation of a pre-pore oligomeric structure that is efficient in pore formation, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号