首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A ‘genes‐to‐ecosystems’ approach has been proposed as a novel avenue for integrating the consequences of intraspecific genetic variation with the underlying genetic architecture of a species to shed light on the relationships among hierarchies of ecological organization (genes → individuals → communities → ecosystems). However, attempts to identify genes with major effect on the structure of communities and/or ecosystem processes have been limited and a comprehensive test of this approach has yet to emerge. Here, we present an interdisciplinary field study that integrated a common garden containing different genotypes of a dominant, riparian tree, Populus trichocarpa, and aquatic mesocosms to determine how intraspecific variation in leaf litter alters both terrestrial and aquatic communities and ecosystem functioning. Moreover, we incorporate data from extensive trait screening and genome‐wide association studies estimating the heritability and genes associated with litter characteristics. We found that tree genotypes varied considerably in the quality and production of leaf litter, which contributed to variation in phytoplankton abundances, as well as nutrient dynamics and light availability in aquatic mesocosms. These ‘after‐life’ effects of litter from different genotypes were comparable to the responses of terrestrial communities associated with the living foliage. We found that multiple litter traits corresponding with aquatic community and ecosystem responses differed in their heritability. Moreover, the underlying genetic architecture of these traits was complex, and many genes contributed only a small proportion to phenotypic variation. Our results provide further evidence that genetic variation is a key component of aquatic–terrestrial linkages, but challenge the ability to predict community or ecosystem responses based on the actions of one or a few genes.  相似文献   

2.
Tropical montane ecosystems of the Andes are critically threatened by a rapid land‐use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest–pasture–urban) on stream physico‐chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico‐chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land‐use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf‐shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land‐use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.  相似文献   

3.
The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient‐poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N‐ and P‐excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year‐round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic‐terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.  相似文献   

4.
溪流粗木质残体的生态学研究进展   总被引:18,自引:3,他引:15  
粗木质残体(CWD)是森林或溪流生态系统中残存的超过一定直径大小的站杆、倒木、枝桠及根系等死木质物的总称,溪流CWD对于溪流生态系统的稳定,水生生物多样性,河槽形态及其变化过程有着重要的作用。对溪流CWD的产生和分类,溪流CWD对于溪流生态系统的稳定,水生生物多样性,河槽形态及其变化过程有着重要的作用。对溪流CWD的产生和分类,溪流CWD贮量,分布和动态,以及溪流CWD的功能和管理分别进行了总结,并指出应尽快在国内开展溪流CWD的研究和管理。  相似文献   

5.
The extent and ecological significance of trophic linkages across ecosystem boundaries have been the subject of considerable recent research attention. North American beavers Castor canadensis engineer terrestrial influences in aquatic ecosystems by constructing terrestrial food caches near their lodges and aquatic influences in terrestrial ecosystems by building dams and flooding low lying areas. However, it is poorly resolved to what extent beavers rely on aquatic food sources and whether this reliance is greater during winter when ice cover physically confines beavers to aquatic habitats or during summer when warm, ice free water promotes the growth and accessibility of aquatic vegetation. Working in a subarctic region, we surveyed the abundance of aquatic and terrestrial food sources in and around lotic and lentic environments and estimated their contributions to beaver diets during open water and ice covered periods using carbon and nitrogen stable isotope analysis of hair samples. Ponds had four times more aquatic vegetation than streams, but terrestrial habitats around ponds had less than half as much shrub cover as habitats adjacent to streams. Beaver diets in this subarctic environment are estimated to be comprised of 60 to 80% aquatic vegetation, with beavers occupying ponds consuming more aquatic vegetation in winter than beavers occupying streams, which rely more on terrestrial shrubs cached near their lodge. Collectively, these results show how the influence of physical barriers on ecosystem linkages can be modified by habitat‐ and season‐specific abundances of preferred resources and the potential for animals to consume food in ecosystems and seasons different from where and when the food was harvested.  相似文献   

6.
Habitat coupling in lake ecosystems   总被引:21,自引:0,他引:21  
Lakes are complex ecosystems composed of distinct habitats coupled by biological, physical and chemical processes. While the ecological and evolutionary characteristics of aquatic organisms reflect habitat coupling in lakes, aquatic ecology has largely studied pelagic, benthic and riparian habitats in isolation from each other. Here, we summarize several ecological and evolutionary patterns that highlight the importance of habitat coupling and discuss their implications for understanding ecosystem processes in lakes. We pay special attention to fishes because they play particularly important roles as habitat couplers as a result of their high mobility and flexible foraging tactics that lead to inter-habitat omnivory. Habitat coupling has important consequences for nutrient cycling, predator-prey interactions, and food web structure and stability. For example, nutrient excretion by benthivorous consumers can account for a substantial fraction of inputs to pelagic nutrient cycles. Benthic resources also subsidize carnivore populations that have important predatory effects on plankton communities. These benthic subsidies stabilize population dynamics of pelagic carnivores and intensify the strength of their interactions with planktonic food webs. Furthermore, anthropogenic disturbances such as eutrophication, habitat modification, and exotic species introductions may severely alter habitat connections and, therefore, the fundamental flows of nutrients and energy in lake ecosystems.  相似文献   

7.
Davis JM  Rosemond AD  Small GE 《Oecologia》2011,167(3):821-834
Because nutrient enrichment can increase ecosystem productivity, it may enhance resource flows to adjacent ecosystems as organisms cross ecosystem boundaries and subsidize predators in recipient ecosystems. Here, we quantified the biomass and abundance of aquatic emergence and terrestrial spiders in a reference and treatment stream that had been continuously enriched with nitrogen and phosphorus for 5 years. Because we previously showed that enrichment increased secondary production of stream consumers, we predicted that aquatic emergence flux would be higher in the treatment stream, subsequently increasing the biomass and abundance of terrestrial spiders. Those increases were predicted to be greatest for spiders specializing on aquatic emergence subsidies (e.g., Tetragnathidae). By adding a 15N stable isotope tracer to both streams, we also quantified nitrogen flow from the stream into the riparian community. Emergence biomass, but not abundance, was higher in the treatment stream. The average body size of emerging adult insects and the relative dominance of Trichoptera adults were also greater in the treatment stream. However, spider biomass did not differ between streams. Spiders also exhibited substantially lower reliance on aquatic emergence nitrogen in the treatment stream. This reduced reliance likely resulted from shifts in the body size distributions and community composition of insect emergence that may have altered predator consumption efficiency in the treatment stream. Despite nutrient enrichment approximately doubling stream productivity and associated cross-ecosystem resource flows, the response of terrestrial predators depended more on the resource subsidy’s characteristics that affected the predator’s ability to capitalize on such increases.  相似文献   

8.
In light of current global changes to ecosystem function (e.g. climate change, trophic downgrading, and invasive species), there has been a recent surge of interest in exploring differences in nutrient cycling among ecosystem types. In particular, a growing awareness has emerged concerning the importance of scavenging in food web dynamics, although no studies have focused specifically on exploring differences in carrion consumption between aquatic and terrestrial ecosystems. In this forum we synthesize the scavenging literature to elucidate differences in scavenging dynamics between terrestrial and marine ecosystems, and identify areas where future research is needed to more clearly understand the role of carrion consumption in maintaining ecosystem function within each of these environments. Although scavenging plays a similar functional role in terrestrial and aquatic food webs, here we suggest that several fundamental differences exist in scavenging dynamics among these ecosystem types due to the unique selection pressures imposed by the physical properties of water and air. In particular, the movement of carcasses in marine ecosystems (e.g. wave action, upwelling, and sinking) diffuses biological activity associated with scavenging and decomposition across large, three‐dimensional spatial scales, creating a unique spatial disconnect between the processes of production, scavenging, and decomposition, which in contrast are tightly linked in terrestrial ecosystems. Moreover, the limited role of bacteria and temporal stability of environmental conditions on the sea floor appears to have facilitated the evolution of a much more diverse community of macrofauna that relies on carrion for a higher portion of its nutrient consumption than is present in terrestrial ecosystems. Our observations are further discussed as they pertain to the potential impacts of climate change and trophic downgrading (i.e. removal of apex consumers from ecosystems) on scavenging dynamics within marine and terrestrial ecosystems.  相似文献   

9.
孙然好  程先  陈利顶 《生态学报》2017,37(24):8445-8455
水生态功能分区是针对水生态系统特征的陆地生态系统划分,是为流域水生态管理提供生态背景和基本单元。陆地-水生态系统的耦合是水生态功能分区的核心,但多停留在个别小流域进行理论探讨,大型流域的实际案例较少。针对海河流域独特的气候、地貌、水文和人类活动特征,提出了水生态功能分区的三级指标体系。一级二级区针对气候、地貌、水文背景进行"自上而下"的分区,三级区针对人类活动对水资源、水环境、生境影响,采用"自下而上"的分区方法。最终,海河流域划分了6个一级区、16个二级区和73个三级区。研究充分体现了"以水定陆、以陆控水"的基本原则,以及"自下而上"和"自上而下"分区方法的优点,结果可为海河流域水生态管理提供科学依据,为水资源空间调配与合理利用、产业结构布局与区域协调等服务。  相似文献   

10.
Community specificity: life and afterlife effects of genes   总被引:1,自引:0,他引:1  
Community-level genetic specificity results when individual genotypes or populations of the same species support different communities. Our review of the literature shows that genetic specificity exhibits both life and afterlife effects; it is a widespread phenomenon occurring in diverse taxonomic groups, aquatic to terrestrial ecosystems, and species-poor to species-rich systems. Such specificity affects species interactions, evolution, ecosystem processes and leads to community feedbacks on the performance of the individuals expressing the traits. Thus, genetic specificity by communities appears to be fundamentally important, suggesting that specificity is a major driver of the biodiversity and stability of the world's ecosystems.  相似文献   

11.
Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context‐dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non‐native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.  相似文献   

12.
Ecological coupling by material exchanges or dispersal between spatially distinct communities has important impacts on ecological processes, such as diversity–stability relationships, ecosystem function, and food web dynamics. One important mode of coupling between ecosystems occurs via organisms with complex life histories, which often switch between distinct ecosystems during their life cycle, and so can be channels of material exchanges between these ecosystems. Some organisms with complex life histories (e.g. frogs, dragonflies) can be abundant and effective predators during one or more life stages, and so provide conduits for strong direct and indirect interactions across ecosystem boundaries, linking the dynamics of discrete and often quite dissimilar community types. We present simple models and a case study (tailored to pond ecosystems), to explore how interactions within larval habitats can indirectly impact ecological interactions in adult habitats. Using our case study as a springboard, we propose that cohorts of predators emerging from natal habitats (e.g. ponds) cast 'predation shadows' on the surrounding adult (e.g. terrestrial) landscape. Trophic interactions within ponds, and the distribution of ponds on the landscape, can thus affect the spatial pattern in the strength of these predation shadows, creating strong spatial patterning in terrestrial trophic cascades. Our findings emphasize the importance of organisms with complex life histories as generators of strong links across ecosystem boundaries, and as potential sources of spatial variation in the strength and indirect impacts of interspecific interactions.  相似文献   

13.
The aquatic macrophytic vegetation constituting the wetlands situated along the coast of Lake Victoria provides valuable services to both local and regional communities as well as an important ecological function through the transition between terrestrial and aquatic ecosystems. The wetland vegetation is typically rooted in the substrate on the landward side of the lake, but forms a floating mat towards the middle of the wetland and at the wetland/lake interface. Cyperus papyrus and Miscanthidium violaceum vegetation typically dominate the permanently inundated wetland areas along most of the shores of Lake Victoria. Due to the prevailing climatic and hydrological catchment conditions, these macrophytic plants (papyrus in particular) tend to exhibit high net productivity and nutrient uptake which strongly influences both wetland status and lake water quality. In addition, these wetlands provide important economic livelihoods for the local populations. The integrity and physical structure of these wetlands strongly influences their associated mass transport mechanisms (water, nutrients and carbon) and ecosystem processes. Wetland degradation in Africa is an increasing problem, as these ecosystems are relied upon to attenuate industrial, urban and agricultural pollution and supply numerous services and resources. In an integrated project focused on the wetlands of Lake Victoria, the ecological and economic aspects of littoral wetlands were examined and new instruments developed for their sustainable management.  相似文献   

14.
Riparian ecosystems play an important role in modulating a range of ecosystem processes that affect aquatic and terrestrial organisms. Butterflies are a major herbivore in terrestrial ecosystems and are also common in riparian ecosystems. Since butterflies use plants for larval food and adult nectar sources in riparian ecosystems, butterfly diversity can be utilized to evaluate riparian ecosystems. We compiled butterfly data from 33 sites in three riparian ecosystem types across the country and compared butterfly diversity in terms of number of species and quality index in relation to riparian environmental variables. Number of butterfly and plant species was not different among three riparian habitat types. Additionally, there was no significant ecological variable to distinguish the butterfly communities on three riparian habitats. Non-metric multi-dimensional scaling ordination showed that butterfly communities in three riparian ecosystem types differed from each other, and butterfly riparian quality index was the main variable for butterfly assemblages. Five indicator species for moor and another five species for riverine riparian ecosystems were identified. Three and one indicator species for moor and riparian ecosystems, respectively, were plant specialists, while 44 butterflies were general feeders, feeding on a wide range of hostplants in several habitats. These results suggest that butterfly species use actively riparian habitats for nectar and larval food, and the butterfly riparian quality index can be employed to track faunal change in riparian habitats, which are frequently threatened by disturbances such as water level and climate changes, and invasive species.  相似文献   

15.
Community structure and dynamics can be influenced by resource transfers between ecosystems, yet little is known about how boundary structure determines both the magnitude of exchanges and their effects on recipient and donor communities. Aquatic and terrestrial ecosystems are often linked by resource fluxes and riparian vegetation is commonly affected by anthropogenic alterations to land use or river hydrological regime. I investigated whether shrubs at the freshwater–terrestrial interface alter the supply, distribution and importance of aquatic prey resources to terrestrial consumers. Shrubs were predicted to alter the larval community composition of aquatic insects and the emergence of winged adults, thus affecting aquatic prey subsidies to terrestrial consumers. In addition, shrubs were hypothesized to alter the microclimatic suitability of the riparian zone for adult aquatic insects, act as a physical barrier to their dispersal and affect terrestrial community composition, particularly the abundance and type of predators that could benefit from the aquatic prey resource. Stable isotope dietary analyses and a survey of shrub‐dominated and open grassland riparian habitats revealed that larval densities of aquatic insects (EPTM: Ephemeroptera, Plecoptera, Trichoptera and Megaloptera) were higher in shrub than grassland habitats; however, reduced emergence and lateral dispersal in shrub areas led to lower densities of adults. The temperature and relative humidity of the riparian zone did not differ between the habitats. Ground‐active terrestrial invertebrate communities had a higher proportion of cursorial spiders in grassland, coinciding with greater abundances of aquatic prey. Aquatic prey contribution to cursorial spider diet matched adult aquatic insect abundances. Overall, riparian shrubs reduced the magnitude, or at least altered the timing, of cross‐ecosystem subsidy supply, distribution and use by consumers through mechanisms operating in both the aquatic and terrestrial ecosystems. Thus, the structure of ecosystem boundaries has complex effects on the strength of biological interactions between adjacent systems.  相似文献   

16.
Herbivores induce plants to undergo diverse processes that minimize costs to the plant, such as producing defences to deter herbivory or reallocating limited resources to inaccessible portions of the plant. Yet most plant tissue is consumed by decomposers, not herbivores, and these defensive processes aimed to deter herbivores may alter plant tissue even after detachment from the plant. All consumers value nutrients, but plants also require these nutrients for primary functions and defensive processes. We experimentally simulated herbivory with and without nutrient additions on red alder (Alnus rubra), which supplies the majority of leaf litter for many rivers in western North America. Simulated herbivory induced a defence response with cascading effects: terrestrial herbivores and aquatic decomposers fed less on leaves from stressed trees. This effect was context dependent: leaves from fertilized-only trees decomposed most rapidly while leaves from fertilized trees receiving the herbivory treatment decomposed least, suggesting plants funnelled a nutritionally valuable resource into enhanced defence. One component of the defence response was a decrease in leaf nitrogen leading to elevated carbon : nitrogen. Aquatic decomposers prefer leaves naturally low in C : N and this altered nutrient profile largely explains the lower rate of aquatic decomposition. Furthermore, terrestrial soil decomposers were unaffected by either treatment but did show a preference for local and nitrogen-rich leaves. Our study illustrates the ecological implications of terrestrial herbivory and these findings demonstrate that the effects of selection caused by terrestrial herbivory in one ecosystem can indirectly shape the structure of other ecosystems through ecological fluxes across boundaries.  相似文献   

17.
Two important themes in ecology include the understanding of how interactions among species control ecosystem processes, and how habitats can be connected through transfers of nutrients and energy by mobile organisms. An impressive example of both is the large influx of nutrients and organic matter that anadromous salmon supply to inland aquatic and terrestrial ecosystems and the role of predation by brown bears (Ursus arctos) in transferring these marine-derived nutrients (MDN) from freshwater to riparian habitats. In spite of the recognition that salmon-bear interactions likely play an important role in controlling the flux of MDN from aquatic to riparian habitats, few studies have linked bear predation on salmon to processes such as nitrogen (N) or carbon (C) cycling. We combine landscape-level survey data and a replicated bear-exclosure experiment to test how bear foraging on salmon affects nitrous oxide (N2O) flux, carbon dioxide (CO2) flux, and nutrient concentrations of riparian soils. Our results show that bears feeding on salmon increased soil ammonium (NH4 +) concentrations three-fold and N2O flux by 32-fold. Soil CO2 flux, nitrate (NO3 ), and N transformation differences were negligible in areas where bears fed on salmon. Reference areas without concentrated bear activity showed no detectable change in soil N cycling after the arrival of salmon to streams. Exclosure experiments showed that bear effects on soil nutrient cycles were transient, and soil N processing returned to background conditions within 1 year after bears were removed from the system. These results suggest that recipient ecosystems do not show uniform responses to MDN inputs and highlight the importance of large mobile consumers in generating landscape heterogeneity in nutrient cycles.  相似文献   

18.
Trophic interactions can strongly influence the structure and function of terrestrial and aquatic communities through top-down and bottom-up processes. Species with life stages in both terrestrial and aquatic systems may be particularly likely to link the effects of trophic interactions across ecosystem boundaries. Using experimental wetlands planted with purple loosestrife (Lythrum salicaria), we tested the degree to which the bottom-up effects of floral density of this invasive plant could trigger a chain of interactions, changing the behavior of terrestrial flying insect prey and predators and ultimately cascading through top-down interactions to alter lower trophic levels in the aquatic community. The results of our experiment support the linkage of terrestrial and aquatic food webs through this hypothesized pathway, with high loosestrife floral density treatments attracting high levels of visiting insect pollinators and predatory adult dragonflies. High floral densities were also associated with increased adult dragonfly oviposition and subsequently high larval dragonfly abundance in the aquatic community. Finally, high-flower treatments were coupled with changes in zooplankton species richness and shifts in the composition of zooplankton communities. Through changes in animal behavior and trophic interactions in terrestrial and aquatic systems, this work illustrates the broad and potentially cryptic effects of invasive species, and provides additional compelling motivation for ecologists to conduct investigations that cross traditional ecosystem boundaries.  相似文献   

19.
Greater biodiversity is often associated with increased ecosystem process rates, and is expected to enhance the stability of ecosystem functioning under abiotic stress. However, these relationships might themselves be altered by environmental factors, complicating prediction of the effects of species loss in ecosystems subjected to abiotic stress. In boreal streams, we investigated effects of biodiversity and two abiotic perturbations on three related indices of ecosystem functioning: leaf decomposition, detritivore leaf processing efficiency (LPE) and detritivore growth. Replicate field enclosures containing leaves and detritivore assemblages were exposed to liming and nutrient enrichment, raising pH and nutrient levels. Both treatments constitute perturbations for our naturally acidic and nutrient-poor streams. We also varied detritivore species richness and density. The effects of the abiotic and diversity manipulations were similar in magnitude, but whereas leaf decomposition increased by 18% and 8% following liming and nutrient enrichment, respectively, increased detritivore richness reduced leaf decomposition (6%), detritivore LPE (19%) and detritivore growth (12%). The detritivore richness effect on growth was associated with negative trait-independent complementarity, indicating interspecific interference competition. These interactions were apparently alleviated in both enriched and limed enclosures, as trait-independent complementarity became less negative. LPE increased with detritivore density in the monocultures, indicating benefits of intra-specific aggregation that outweighed the costs of intra-specific competition, and dilution of these benefits probably contributed to lowered leaf decomposition in the species mixtures. Finally, the effects of liming were reduced in most species mixtures relative to the monocultures. These results demonstrate how environmental changes might regulate the consequences of species loss for functioning in anthropogenically perturbed ecosystems, and highlight potential influences of biodiversity on functional stability. Additionally, the negative effects of richness and positive effects of density in our field study were opposite to previous laboratory observations, further illustrating the importance of environmental context for biodiversity–ecosystem functioning relationships.  相似文献   

20.
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号