首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Predation pressure may affect many aspects of prey behavior, including forming groups and changes in social interactions. We studied the aggregation behavior of competing gammarids Dikerogammarus villosus and Pontogammarus robustoides (Amphipoda, Crustacea) to check whether they modify their preferences for conspecifics or heterospecifics in response to predator (the racer goby Babka gymnotrachelus) kairomones in the presence or absence of stone shelters (alternative protection source). Both species exhibited preferences toward shelters occupied by conspecifics over empty shelters and conspecifics apart from shelters, suggesting that their aggregation depends not only on habitat heterogeneity, but also on their social interactions. Moreover, gammarids in the presence of shelters (safer conditions) preferred conspecifics over heterospecifics, but predator kairomones made them form aggregations irrespective of species. In the predator presence, P. robustoides increased its aggregation level only in the sheltered conditions, whereas D. villosus exhibited this response only in the absence of shelters, suggesting that this behavior can protect it against predators. Therefore, we tested the antipredator effectiveness of D. villosus aggregations by exposing them to fish predation. Gobies foraged most effectively on immobile single gammarids compared to moving and aggregated individuals. Fish also avoided aggregated prey, confirming the protective character of aggregations. We have demonstrated that the predator presence increases aggregation level of prey gammarids and affects their social behavior by reducing antagonistic interactions and avoidance between competing species. This is likely to affect their distribution and functioning in the wild, where predator pressure is a standard situation.  相似文献   

2.
3.
Three major social systems were observed: territorial, isolate, and gregarious. Territorials defend a particular area against intruders. Isolates neither chase conspecifics nor join other individuals, while gregarious species are found in groups. Some species of territorial pomacentrids were found in uni-specific colonies. As gregarious groups neared these colonies, they were attacked by several territorials. The number of chases directed against the various species of intruders was in proportion to the intruder's abundance in the study areas. Predators were uncommon and generally ignored. Isolates were either predators, or slow moving species. Gregarious species could be found in uni-specific or mixed-species groups. In mixed-species groups, there were three subunits: core, associate, and opportunist. Core species were always in the majority and led the group. Associates followed the core species for long periods of time and the opportunists were brief visitors. Quantitative comparisons between uni-specific and mixed-species groups revealed that associates tend to select the larger of the available core groups. Juveniles were also considered and compared to their adults. Juveniles did exhibit the general types of social behaviour found in adults. However, within a species, the adult's behaviour may be very different from their own juveniles. The coral, and the chases by pomacentrids, were related to the formation and dispersion of gregarious groups.  相似文献   

4.
History and taxonomy: their roles in the core-satellite hypothesis   总被引:2,自引:0,他引:2  
Metapopulation models are important in explaining the distribution and abundance of species through time and space. These models combine population dynamics with stochastic variation in extinction and immigration parameters associated with local populations. One of the predictions of metapopulation models is a bimodal distribution of species frequency of occurrence, a pattern that led to the development of the core-satellite species hypothesis. The spatial scale and taxonomic classification of past core-satellite studies has often been undefined. In our study, we have integrated metapopulation dynamics with the roles that differential dispersal ability and history play in the shaping of communities. The differences in distribution patterns between landbridge islands and oceanic islands, and among various taxa (birds, mammals, herptiles, arthropods, fish, and plants) are analyzed. The majority of landbridge islands comprised locally and regionally abundant species (core species), whereas the majority of oceanic islands had a uniform distribution (or no end-peak in their distribution). The patterns of distribution among the taxonomic groups also showed differences. Birds (good dispersers) consistently showed bimodal- and core-distribution patterns. The bimodal prediction of species distribution is best exemplified in the landbridge islands and in birds, and least in oceanic islands and in organisms other than birds. These results illustrate the importance of testing models with various taxonomic groups and at different spatial scales and defining these scales before formally testing the predictions of the models.  相似文献   

5.
The major role played by environmental factors in determining the geographical range sizes of species raises the possibility of describing their long-term dynamics in relatively simple terms, a goal which has hitherto proved elusive. Here we develop a stochastic differential equation to describe the dynamics of the range size of an individual species based on the relationship between abundance and range size, derive a limiting stationary probability model to quantify the stochastic nature of the range size for that species at steady state, and then generalize this model to the species-range size distribution for an assemblage. The model fits well to several empirical datasets of the geographical range sizes of species in taxonomic assemblages, and provides the simplest explanation of species-range size distributions to date.  相似文献   

6.
We investigate the dynamics of the 2009 influenza A (H1N1/S-OIV) pandemic by analyzing data obtained from World Health Organization containing the total number of laboratory-confirmed cases of infections--by country--in a period of 69 days, from 26 April to 3 July, 2009. Specifically, we find evidence of exponential growth in the total number of confirmed cases and linear growth in the number of countries with confirmed cases. We also find that, i) at early stages, the cumulative distribution of cases among countries exhibits linear behavior on log-log scale, being well approximated by a power law decay; ii) for larger times, the cumulative distribution presents a systematic curvature on log-log scale, indicating a gradual change to lognormal behavior. Finally, we compare these empirical findings with the predictions of a simple stochastic model. Our results could help to select more realistic models of the dynamics of influenza-type pandemics.  相似文献   

7.
From ants to humans, the timing of many animal behaviors comes in bursts of activity separated by long periods of inactivity. Recently, mathematical modeling has shown that simple algorithms of priority-driven behavioral choice can result in bursty behavior. To experimentally test this link between decision-making circuitry and bursty dynamics, we have turned to Drosophila melanogaster. We have found that the statistics of intervals between activity periods in endogenous activity-rest switches of wild-type Drosophila are very well described by the Weibull distribution, a common distribution of bursty dynamics in complex systems. The bursty dynamics of wild-type Drosophila walking activity are shown to be determined by this inter-event distribution alone and not by memory effects, thus resembling human dynamics. Further, using mutant flies that disrupt dopaminergic signaling or the mushroom body, circuitry implicated in decision-making, we show that the degree of behavioral burstiness can be modified. These results are thus consistent with the proposed link between decision-making circuitry and bursty dynamics, and highlight the importance of using simple experimental systems to test general theoretical models of behavior. The findings further suggest that analysis of bursts could prove useful for the study and evaluation of decision-making circuitry.  相似文献   

8.
A number of mechanisms have been proposed to explain the widely observed positive interspecific relationship between local abundance and extent of geographic distribution in animals Here, we use data on British birds to assess two of these hypotheses that the relationship results from the relative position of a study area with respect to the geographic ranges of the species which occur there, and that the relationship results from a simple difference between taxonomic groups, rather than any general tendency for more abundant species to have larger range sizes We find support for neither hypothesis Phylogenetically controlled comparative analyses reveal that the positive abundance-range size relationship is consistently found within taxa, even when abundance and range size are calculated at a variety of spatial and temporal scales Analyses both across species and within taxa show that bird species for which Britain is near to the centre of their distribution in Europe tend to have larger British range sizes and higher abundances than do species where Britain is close to the edge of their range in Europe However, these relationships do not cause that between abundance and range size, because this latter relationship persists within different range position categories Whether a species is near the centre or edge of its geographic range in Britain may affect its position on the abundance-range size relationship, but does not produce the relationship Range position in Britain does, however, seem to be related to the magnitude of temporal changes in the range sizes of British birds There is some evidence to suggest that species for which Britain is nearer to their European range centre have shown smaller changes in distribution over the period 1970–1990 than have species for which Britain is close to their European range edge  相似文献   

9.
Neutral models and differential responses of species to environmental heterogeneity offer complementary explanations of species abundance distribution and dynamics. Under what circumstances one model prevails over the other is still a matter of debate. We show that the decay of similarity over time in rocky seashore assemblages of algae and invertebrates sampled over a period of 16 years was consistent with the predictions of a stochastic model of ecological drift at time scales larger than 2 years, but not at time scales between 3 and 24 months when similarity was quantified with an index that reflected changes in abundance of rare species. A field experiment was performed to examine whether assemblages responded neutrally or non-neutrally to changes in temporal variance of disturbance. The experimental results did not reject neutrality, but identified a positive effect of intermediate levels of environmental heterogeneity on the abundance of rare species. This effect translated into a marked decrease in the characteristic time scale of species turnover, highlighting the role of rare species in driving assemblage dynamics in fluctuating environments.  相似文献   

10.
To date, the study of collective behaviour has mainly focused on intraspecific situations: the collective decision-making of mixed-species groups involving interspecific aggregation–segregation has received little attention. Here, we show that, in both conspecific and heterospecific groups, the larvae of two species (Lucilia sericata and Calliphora vomitoria, calliphorid carrion-feeding flies) were able to make a collective choice. In all groups, the choice was made within a few minutes and persisted throughout the period of the experiment. The monitoring of a focal individual within a group showed that these aggregations were governed by attractive and retentive effects of the group. Furthermore, the similarity observed between the conspecific and heterospecific groups suggested the existence of shared aggregation signals. The group size was found to have a stronger influence than the species of necrophagous larvae. These results should be viewed in relation to the well-known correlation between group size and heat generation. This study provides the first experimental examination of the dynamics of collective decision-making in mixed-species groups of invertebrates, contributing to our understanding of the cooperation–competition phenomenon in animal social groups.  相似文献   

11.
Spatially heterogeneous environments are generally characterized by nested landscape patterns with resource aggregations on several scales. Empirical studies indicate that such nested landscape patterns impose selection constraints on the perceptive scales of animals, but the underlying selection mechanisms are unclear. We investigated the selection dynamics of perceptive scale within a spatial resource utilization model, where the environment is characterized by its resource distribution and species differ in their perceptive scales and resource preemption capabilities. Using three model landscapes with various resource distributions, we found that the optimal perceptive scale is determined by scale-specific attributes of the landscape pattern and that the number of coexisting species increases with the number of characteristic scales. Based on the results of this model, we argue that resource aggregations on different scales act as distinct resources and that animal species of particular perceptive scales are superior in utilizing resource aggregations of comparable spatial extent. Due to the allometric relationship between body size and perceptive scale, such fitness difference might result in discontinuous body mass distributions.  相似文献   

12.
Aggregation behavior is common throughout the animal world, although it is rare in spiders (Araneae). Nephila clavipes spiders are frequently found both in solitary webs and in aggregations of conspecifics. N. clavipes aggregations are not considered social, because these spiders do not engage in food sharing or group parental care. The currently accepted explanation for N. clavipes aggregations is that they form passively, as spiders aggregate in response to the patchy distribution of food resources in the environment. Here, we show instead that N. clavipes females actively seek out conspecifics and, therefore, that aggregations arise from conspecific attraction. We experimentally established that (1) N. clavipes females actively follow the trails left by conspecifics and (2) aggregations are formed independently of prey density in a particular area. These results suggest that while aggregations in high food patches increase encounter rates of conspecific spiders and support the nutritional needs of multiple large spiders, this potential benefit is not the proximate mechanism for aggregation. Thus, we hypothesize that N. clavipes females likely acquire fitness benefits from aggregating with conspecifics.  相似文献   

13.
Studies of social birds and mammals have produced extensive theory regarding the formation and dynamics of kin-based social groups in vertebrates. However, comparing kin dynamics in birds and mammals to social reptiles provides the opportunity to identify selective factors that promote independent origins of kin sociality across vertebrates. We combined a 5-year mark-recapture study with a DNA microsatellite analysis of relatedness in a social lizard (Xantusia vigilis) to examine the formation and stability of kin groups. We found that these lizards are highly sedentary and that groups often form through the delayed dispersal of offspring. Groups containing juveniles had higher relatedness than adult-only groups, as juveniles were commonly found in aggregations with at least one parent and/or sibling. Groups containing nuclear family members were more stable than groups of less-related lizards, as predicted by social theory. We conclude that X. vigilis aggregations conform to patterns of kin sociality observed in avian and mammalian systems and represent an example of convergent evolution in social systems. We suggest that kin-based sociality in this and other lizards may be a by-product of viviparity, which can promote delayed juvenile dispersal by allowing prolonged interaction between a neonate and its mother.  相似文献   

14.
Aim The abundance distribution of organisms at regional scales is commonly interpreted as the result of spatial variation in habitat suitability. However, the possibility that geography itself may affect patterns of distribution has received less attention. For example, the abundance of wintering bird populations might be influenced by the cost of reaching areas located far away from the main migratory pathways. We studied the abundance distribution of three common migratory passerines (meadow pipits, Anthus pratensis; common chaffinches, Fringilla coelebs; and European robins, Erithacus rubecula) wintering in farmlands located in the 600‐km long Cantabrian coastal sector of northern Spain, roughly perpendicular to the west Pyrenean migratory pathway that drives European migrant birds into the Iberian Peninsula. Location The study area occupies a belt located between the Atlantic coast and the Cantabrian Mountains in northern Spain. Methods We counted wintering and breeding birds and measured the structure of vegetation and environmental variables (altitude, rainfall, temperature) in 68 farmlands distributed at different distances from the west Pyrenean migratory flyway. We also studied the distribution of birds ringed in central and northern Europe and recovered in the study area between October and February. Analyses were based on single univariate statistics (chi‐square tests), ordination by principal components analysis and multiple regression. Results Controlling for the effects of climate, vegetation structure and local abundance of breeding conspecifics, the winter abundance of all three species decreased with the distance from their main migratory route in the western Pyrenees. Such patterns fitted well to the observed distribution of ringing recoveries. Main conclusions Our results support a link between the movements of birds along the Pyrenean migratory pathway and their winter abundance in northern Spain. According to this view, the sectors located near the migratory pathway seem to be more easily occupied by migrants, supporting the idea that proximity to passage areas may explain the fine‐grain regional patterning of species abundance in wintering grounds.  相似文献   

15.
Recent outbreaks of highly pathogenic avian influenza virus (AIV) in birds, humans and other mammalian species calls for a better understanding of virus dynamics in wild bird species and populations that act as maintenance hosts. Host ecology influences the transmission of pathogens and can be used to explore and infer pathogen dynamics. Most of the ecological processes proposed to explain AIV transmission in wild birds have been derived from studies conducted in the temperate and boreal regions of the northern hemisphere. We evaluate the role of two key drivers of AIV dynamics in a waterfowl community in Zimbabwe (southern Africa): (1) the recruitment of young birds and (2) the seasonal aggregation of birds. We analyse the seasonal variation of AIV prevalence in waterfowl and overlay these data with the phenology of reproduction and the seasonal variation in the local abundance of these species. We find that the breeding period of southern Afrotropical waterfowl species is more extended and somewhat less synchronized among species in the community than is the case in temperate and boreal waterfowl communities. Young birds are recorded at most times of the year, and these immunologically naïve individuals can therefore act as new hosts for AIV throughout the year within the wild bird population. Although host aggregation peaks in the cold‐dry to hot‐dry season, birds still aggregate throughout the year and this potentially spreads the opportunities for first infection of juveniles and other naïve birds temporally. We did not find a relationship between season, AIV prevalence in waterfowl, the influx of juveniles or the gradual aggregation of birds during the dry season. Therefore, the main drivers of AIV dynamics (juvenile influx and host abundance/aggregation), although present in Afrotropical regions, could not explain the AIV seasonal patterns in our study in contrast to results reported from temperate and boreal regions. These differences imply variation in the risk of AIV circulation in waterfowl and in the risk of spread to poultry, other animals or humans.  相似文献   

16.
We examined the factors that influenced movement probabilities of snail kites ( Rostrhamus sociabilis ) in Florida, USA, based on birds with radio transmitters ( n =282) during a three-year period from April 1992 through April 1995. We focused on the hypotheses that increased movement probabilities were in response to low food availability or low water levels; the latter also implying low food availability for this species. An alternative hypothesis was that snail kites exhibit exploratory behavior, and corresponding increased movement probabilities, during periods of high food availability. Movement probabilities were not consistent with the hypotheses that low water levels or low food availability were the proximate cues to initiate movement from one wetland to another. Movement probabilities were higher during periods of relatively high food availability and were not associated with water levels; thus were consistent with the hypothesis that snail kites exhibited exploratory behavior during times of food abundance. However, we do not believe that our results are in conflict with previous reports of increased movement during extreme food scarcity; rather, that these hypotheses are not mutually exclusive and reflect different resource levels. During extreme drying events, food becomes virtually unavailable and birds must either move or die, but during times of food abundance there may be an advantage of exploratory behavior. Given that local drying events occur at frequencies of approximately every 5–10 yr in this environment, having explored wetlands throughout their range reduces the need for "blind" searching for suitable alternative habitats when such events do occur.  相似文献   

17.
Dispersal, the movement of an individual away from its natal or breeding ground, has been studied extensively in birds and mammals to understand the costs and benefits of movement behavior. Whether or not invertebrates disperse in response to such attributes as habitat quality or density of conspecifics remains uncertain, due in part to the difficulties in marking and recapturing invertebrates. In the upper Bay of Fundy, Canada, the intertidal amphipod Corophium volutator swims at night around the new or full moon. Furthermore, this species is regionally widespread across a large spatial scale with site-to-site variation in population structure. Such variation provides a backdrop against which biological determinants of dispersal can be investigated. We conducted a large-scale study at nine mudflats, and used swimmer density, sampled using stationary plankton nets, as a proxy for dispersing individuals. We also sampled mud residents using sediment cores over 3 sampling rounds (20–28 June, 10–17 July, 2–11 August 2010). Density of swimmers was most variable at the largest spatial scales, indicating important population-level variation. The smallest juveniles and large juveniles or small adults (particularly females) were consistently overrepresented as swimmers. Small juveniles swam at most times and locations, whereas swimming of young females decreased with increasing mud presence of young males, and swimming of large juveniles decreased with increasing mud presence of adults. Swimming in most stages increased with density of mud residents; however, proportionally less swimming occurred as total mud resident density increased. We suggest small juveniles move in search of C. volutator aggregations which possibly act as a proxy for better habitat. We also suggest large juveniles and small adults move if potential mates are limiting. Future studies can use sampling designs over large spatial scales with varying population structure to help understand the behavioral ecology of movement, and dispersal in invertebrate taxa.  相似文献   

18.
Terleph TA  Lu K  Vicario DS 《PloS one》2008,3(8):e2854
The caudomedial nidopallium (NCM) is a telencephalic auditory area that is selectively activated by conspecific vocalizations in zebra finches and canaries. We recently demonstrated that temporal and spectral dynamics of auditory tuning in NCM differ between these species [1]. In order to determine whether these differences reflect recent experience, we exposed separate groups of each species and sex to different housing conditions. Adult birds were housed either in an aviary with conspecifics (NORM), with heterospecifics (canary subjects in a zebra finch aviary, and vice versa: (CROSS)), or in isolation (ISO) for 9 days prior to testing. We then recorded extracellular multi-unit electrophysiological responses to simple pure tone stimuli (250-5000 Hz) in awake birds from each group and analyzed auditory tuning width using methods from our earlier studies. Relative to NORM birds, tuning was narrower in CROSS birds, and wider in ISO birds. The trend was greater in canaries, especially females. The date of recording was also included as a covariate in ANCOVAs that analyzed a larger set of the canary data, including data from birds tested outside of the breeding season, and treated housing condition and sex as independent variables. These tests show that tuning width was narrower early in the year and broader later. This effect was most pronounced in CROSS males. The degree of the short-term neural plasticity described here differs across sexes and species, and may reflect differences in NCM's anatomical and functional organization related to species differences in song characteristics, adult plasticity and/or social factors. More generally, NCM tuning is labile and may be modulated by recent experience to reflect the auditory processing required for behavioral adaptation to the current acoustic, social or seasonal context.  相似文献   

19.
We quantified the extent and dynamics of social interactions among fruit fly larvae over time. Both a wild-type laboratory population and a recently-caught strain of larvae spontaneously formed social foraging groups. Levels of aggregation initially increased during larval development and then declined with the wandering stage before pupation. We show that larvae aggregated more on hard than soft food, and more at sites where we had previously broken the surface of the food. Groups of larvae initiated burrowing sooner than solitary individuals, indicating that one potential benefit of larval aggregations is an improved ability to dig and burrow into the food substrate. We also show that two closely related species, D. melanogaster and D. simulans, differ in their tendency to aggregate, which may reflect different evolutionary histories. Our protocol for quantifying social behavior in larvae uncovered robust social aggregations in this simple model, which is highly amenable to neurogenetic analyses, and can serve for future research into the mechanisms and evolution of social behavior.  相似文献   

20.
Canonical functions for dispersal-induced synchrony   总被引:4,自引:0,他引:4  
Two processes are universally recognized for inducing spatial synchrony in abundance: dispersal and correlated environmental stochasticity. In the present study we seek the expected relationship between synchrony and distance in populations that are synchronized by density-independent dispersal. In the absence of dispersal, synchrony among populations with simple dynamics has been shown to echo the correlation in the environment. We ask what functional form we may expect between synchrony and distance when dispersal is the synchronizing agent. We formulate a continuous-space, continuous-time model that explicitly represents the time evolution of the spatial covariance as a function of spatial distance. Solving this model gives us two simple canonical functions for dispersal-induced covariance in spatially extended populations. If dispersal is rare relative to birth and death, then covariances between nearby points will follow the dispersal distance distribution. At long distances, however, the covariance tails off according to exponential or Bessel functions (depending on whether the population moves in one or two dimensions). If dispersal is common, then the covariances will follow the mixture distribution that is approximately Gaussian around the origin and with an exponential or Bessel tail. The latter mixture results regardless of the original dispersal distance distribution. There are hence two canonical functions for dispersal-induced synchrony  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号