共查询到20条相似文献,搜索用时 0 毫秒
1.
《The Journal of cell biology》1991,112(5):941-954
In the preceding paper we described pathways of mitotic spindle assembly in cell-free extracts prepared from eggs of Xenopus laevis. Here we demonstrate the poleward flux of microtubules in spindles assembled in vitro, using a photoactivatable fluorescein covalently coupled to tubulin and multi-channel fluorescence videomicroscopy. After local photoactivation of fluorescence by UV microbeam, we observed poleward movement of fluorescein-marked microtubules at a rate of 3 microns/min, similar to rates of chromosome movement and spindle elongation during prometaphase and anaphase. This movement could be blocked by the addition of millimolar AMP-PNP but was not affected by concentrations of vanadate up to 150 microM, suggesting that poleward flux may be driven by a microtubule motor similar to kinesin. In contrast to previous results obtained in vivo (Mitchison, T. J. 1989. J. Cell Biol. 109:637-652), poleward flux in vitro appears to occur independently of kinetochores or kinetochore microtubules, and therefore may be a general property of relatively stable microtubules within the spindle. We find that microtubules moving towards poles are dynamic structures, and we have estimated the average half-life of fluxing microtubules in vitro to be between approximately 75 and 100 s. We discuss these results with regard to the function of poleward flux in spindle movements in anaphase and prometaphase. 相似文献
2.
We proposed that spindle morphogenesis in Drosophila embryos involves progression through four transient isometric structures in which a constant spacing of the spindle poles is maintained by a balance of forces generated by multiple microtubule (MT) motors and that tipping this balance drives pole-pole separation. Here we used fluorescent speckle microscopy to evaluate the influence of MT dynamics on the isometric state that persists through metaphase and anaphase A and on pole-pole separation in anaphase B. During metaphase and anaphase A, fluorescent punctae on kinetochore and interpolar MTs flux toward the poles at 0.03 microm/s, too slow to drive chromatid-to-pole motion at 0.11 microm/s, and during anaphase B, fluorescent punctae on interpolar MTs move away from the spindle equator at the same rate as the poles, consistent with MT-MT sliding. Loss of Ncd, a candidate flux motor or brake, did not affect flux in the metaphase/anaphase A isometric state or MT sliding in anaphase B but decreased the duration of the isometric state. Our results suggest that, throughout this isometric state, an outward force exerted on the spindle poles by MT sliding motors is balanced by flux, and that suppression of flux could tip the balance of forces at the onset of anaphase B, allowing MT sliding and polymerization to push the poles apart. 相似文献
3.
Shi-Mun Kim Eun-Jin Choi Ki-Joon Song Eunjeong Seo Sun-Ho Kee 《Experimental cell research》2009,315(6):943-3984
Wnt signaling plays critical roles in cell proliferation and carcinogenesis. In addition, numerous recent studies have shown that various Wnt signaling components are involved in mitosis and chromosomal instability. However, the role of Axin, a negative regulator of Wnt signaling, in mitosis has remained unclear. Using monoclonal antibodies against Axin, we found that Axin localizes to the centrosome and along mitotic spindles. This localization was suppressed by siRNA specific for Aurora A kinase and by Aurora kinase inhibitor. Interestingly, Axin over-expression altered the subcellular distribution of Plk1 and of phosphorylated glycogen synthase kinase (GSK3β) without producing any notable changes in cellular phenotype. In the presence of Aurora kinase inhibitor, Axin over-expression induced the formation of cleavage furrow-like structures and of prominent astral microtubules lacking midbody formation in a subset of cells. Our results suggest that Axin modulates distribution of Axin-associated proteins such as Plk1 and GSK3β in an expression level-dependent manner and these interactions affect the mitotic process, including cytokinesis under certain conditions, such as in the presence of Aurora kinase inhibitor. 相似文献
4.
A monoclonal antibody, G8, which recognizes a form of tubulin (G8-tubulin) with a novel distribution in Rat-1 cells and Potorous tridactylis kidney (Ptk-2) cells was isolated. G8 labeled the interphase cytoskeleton of Rat-1 fibroblasts but not mitotic spindles or midbodies. G8 also stained a fiber network in some but not all Ptk-2 interphase cells but did not label mitotic spindles or midbodies in these cells. G8-tubulin is the only identified tubulin known to be absent from these structures. This distribution may indicate that G8-tubulin possesses functional specificity. 相似文献
5.
During cell division, eukaryotic cells assemble dynamic microtubule-based spindles to segregate replicated chromosomes. Rapid spindle microtubule turnover, likely derived from dynamic instability, has been documented in yeasts, plants and vertebrates. Less studied is concerted spindle microtubule poleward translocation (flux) coupled to depolymerization at spindle poles. Microtubule flux has been observed only in vertebrates, although there is indirect evidence for it in insect spermatocytes and higher plants. Here we use fluorescent speckle microscopy (FSM) to demonstrate that mitotic spindles of syncytial Drosophila embryos exhibit poleward microtubule flux, indicating that flux is a widely conserved property of spindles. By simultaneously imaging chromosomes (or kinetochores) and flux, we provide evidence that flux is the dominant mechanism driving chromosome-to-pole movement (anaphase A) in these spindles. At 18 degrees C and 24 degrees C, separated sister chromatids moved poleward at average rates (3.6 and 6.6 microm/min, respectively) slightly greater than the mean rates of poleward flux (3.2 and 5.2 microm/min, respectively). However, at 24 degrees C the rate of kinetochore-to-pole movement varied from slower than to twice the mean rate of flux, suggesting that although flux is the dominant mechanism, kinetochore-associated microtubule depolymerization contributes to anaphase A. 相似文献
6.
Centrosomes are considered to be the major sites of microtubule nucleation in mitotic cells (reviewed in ), yet mitotic spindles can still form after laser ablation or disruption of centrosome function . Although kinetochores have been shown to nucleate microtubules, mechanisms for acentrosomal spindle formation remain unclear. Here, we performed live-cell microscopy of GFP-tubulin to examine spindle formation in Drosophila S2 cells after RNAi depletion of either gamma-tubulin, a microtubule nucleating protein, or centrosomin, a protein that recruits gamma-tubulin to the centrosome. In these RNAi-treated cells, we show that poorly focused bipolar spindles form through the self-organization of microtubules nucleated from chromosomes (a process involving gamma-tubulin), as well as from other potential sites, and through the incorporation of microtubules from the preceding interphase network. By tracking EB1-GFP (a microtubule-plus-end binding protein) in acentrosomal spindles, we also demonstrate that the spindle itself represents a source of new microtubule formation, as suggested by observations of numerous microtubule plus ends growing from acentrosomal poles toward the metaphase plate. We propose that the bipolar spindle propagates its own architecture by stimulating microtubule growth, thereby augmenting the well-described microtubule nucleation pathways that take place at centrosomes and chromosomes. 相似文献
7.
In eukaryotes, both chromosome segregation and the determination of the cell division cleavage plane depend on the mitotic spindle apparatus. Spindle malfunctioning can lead to chromosome mis-segregation and cytokinesis defects and hence result in aneuploidy. Thus, the understanding of the structure and function of mitotic spindles is of interest not only from the perspective of basic science, but has implications also for human health and disease. Until recently, this complex microtubule-based structure was studied mainly by cell biological techniques in mammalian cells, by biochemical assays in Xenopus egg extracts, and by genetic approaches in genetically tractable organisms such as yeast, flies, and nematodes. With the rapid development of mass spectrometry and its increasing application to biological problems, it has become possible to subject highly complex structures, such as the mitotic spindle apparatus, to proteomics approaches. Such studies require the isolation of the mitotic spindle, or its substructures, in sufficient amounts and free of excessive contaminants. A number of methods for the isolation of mitotic spindles from mammalian tissue culture cells have been developed in the past. We have compared these methods and found that protocols based on the stabilization of microtubules by taxol were most efficient and reproducible. Here, we describe the further optimization of a taxol-based method, originally developed by Zieve and Solomon [Cell 28 (1982) 233-242], and its application to the isolation of human mitotic spindles at a scale suitable for mass spectrometric analysis [G. Sauer, R. Korner, A. Hanisch, A. Ries, E.A. Nigg, H.H.W. Sillje, Mol. Cell. Proteomics 4 (2005) 35-43]. 相似文献
8.
Mitchison TJ 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2005,360(1455):623-629
In Xenopus extract meiotic spindles, microtubules slide continuously towards their minus ends, a process called poleward flux. This article discusses recent progress in determining the mechanism of poleward flux, and its functions in spindle organization and generating force on chromosomes. Bipolar organization is required for flux and inhibition of the mitotic kinesin Eg5 inhibits flux, suggesting the sliding force for flux is generated by Eg5 pushing anti-parallel microtubules apart. An important function of flux in spindle organization may be to transport minus ends nucleated at chromatin towards the pole. By pulling microtubules through attachment sites at kinetochores, flux may generate poleward force on metaphase chromosomes. 相似文献
9.
C-microtubules in isolated mitotic spindles 总被引:3,自引:0,他引:3
10.
Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells 总被引:1,自引:0,他引:1
The centrosome is a highly regulated organelle and its proper duplication is indispensable for the formation of bipolar mitotic spindles and balanced chromosome segregation. To elucidate a possible linkage between centrosome duplication and radiation-induced nuclear damage, we examined centrosome dynamics in U2-OS osteosarcoma cells following gamma-irradiation. Nearly all control cells contained one or two centrosomes, and at mitosis more than 97% of the cells displayed typical bipolar spindles. In contrast, over 20% of cells at 48 h after 10 Gy gamma-irradiation contained more than two centrosomes, and 60% of the mitotic cells showed aberrant spindles organized by multiple poles. Remarkably, the cells with multiple centrosomes frequently exhibited changes in size and/or morphology of the nucleus, including micronuclei formation. We conclude that abnormal centrosome duplication could be one of the key events involved in nuclear fragmentation and perhaps even cell death following irradiation. 相似文献
11.
PKD2 interacts and co-localizes with mDia1 to mitotic spindles of dividing cells: role of mDia1 IN PKD2 localization to mitotic spindles 总被引:1,自引:0,他引:1
Mutations in pkd2 result in the type 2 form of autosomal dominant polycystic kidney disease, which accounts for approximately 15% of all cases of the disease. PKD2, the protein product of pkd2, belongs to the transient receptor potential superfamily of cation channels, and it can function as a mechanosensitive channel in the primary cilium of kidney cells, an intracellular Ca(2+) release channel in the endoplasmic reticulum, and/or a nonselective cation channel in the plasma membrane. We have identified mDia1/Drf1 (mammalian Diaphanous or Diaphanous-related formin 1 protein) as a PKD2-interacting protein by yeast two-hybrid screen. mDia1 is a member of the RhoA GTPase-binding formin homology protein family that participates in cytoskeletal organization, cytokinesis, and signal transduction. We show that mDia1 and PKD2 interact in native and in transfected cells, and binding is mediated by the cytoplasmic C terminus of PKD2 binding to the mDia1 N terminus. The interaction is more prevalent in dividing cells in which endogenous PKD2 and mDia1 co-localize to the mitotic spindles. RNA interference experiments reveal that endogenous mDia1 knockdown in HeLa cells results in the loss of PKD2 from mitotic spindles and alters intracellular Ca(2+) release. Our results suggest that mDia1 facilitates the movement of PKD2 to a centralized position during cell division and has a positive effect on intracellular Ca(2+) release during mitosis. This may be important to ensure equal segregation of PKD2 to the daughter cell to maintain a necessary level of channel activity. Alternatively, PKD2 channel activity may be important in the cell division process or in cell fate decisions after division. 相似文献
12.
The regulation of mitotic spindle function 总被引:5,自引:0,他引:5
S M Wolniak 《Biochimie et biologie cellulaire》1988,66(6):490-514
The process of mitosis includes a series of morphological changes in the cell in which the directional movements of chromosomes are the most prominent. The presence of a microtubular array, known as the spindle or mitotic apparatus, provides at least a scaffold upon which these movements take place. The precise mechanism for chromosome movement remains obscure, but new findings suggest that the kinetochore may play a key role in chromosome movement toward the spindle pole, and that sliding interactions between or among adjacent microtubules may provide the mechanochemical basis for spindle elongation. The physiological regulation of the anaphase motors and of spindle operation either before or after anaphase remains equally elusive. Elicitors that may serve as controlling elements in spindle function include shifts in cytosolic calcium activity and perhaps the activation or inactivation of protein kinases, which in turn produce changes in the state of phosphorylation of specific spindle components. 相似文献
13.
14.
Molecular motors are required for spindle assembly and maintenance during cell division. How motors move and interact inside spindles is unknown. Using photoactivation and photobleaching, we measure mitotic motor movement inside a dynamic spindle. We find that dynein–dynactin transports the essential motor Eg5 toward the spindle poles in Xenopus laevis egg extract spindles, revealing a direct interplay between two motors of opposite directionality. This transport occurs throughout the spindle except at the very spindle center and at the spindle poles, where Eg5 remains stationary. The variation of Eg5 dynamics with its position in the spindle is indicative of position-dependent functions of this motor protein. Our results suggest that Eg5 drives microtubule flux by antiparallel microtubule sliding in the spindle center, whereas the dynein-dependent concentration of Eg5 outside the spindle center could contribute to parallel microtubule cross-linking. These results emphasize the importance of spatially differentiated functions of motor proteins and contribute to our understanding of spindle organization. 相似文献
15.
B. A. Palevitz 《Protoplasma》1988,142(1):74-78
Summary The organization of kinetochore fibers was examined inAllium root cells processed for tubulin immunocytochemistry. Metaphase fibers consist of a core or trunk of Mts to which are attached numerous branches, yielding a bottle-brush of fir-tree pattern similar to that reported inHaemanthus endosperm cells. Many of the branches cross the midzone and extend into the opposite half-spindle. In addition, branch Mts associate with more than one kinetochore fiber. During anaphase, branch Mts elongate while the trunks shorten and fuse into polar caps. Our results are discussed in terms of spindle fiber organization and Mt polarity.Abbreviations K
Kinetochore
- Mt
microtubule 相似文献
16.
Hirohisa Masuda 《BioEssays : news and reviews in molecular, cellular and developmental biology》1995,17(1):45-51
The mitotic spindle contains the machinery responsible for sister chromatid segregation. It is composed of a complex and dynamic array of microtubules, which are nucleated from the spindle poles. Studies of yeast spindle functions by molecular genetic analysis and by in vitro functional analysis have identified proteins that are mitosis-specific and present at very low concentrations in the cell, and have revealed the molecular bases of several processes required for the formation and functioning of the mitotic spindle. Here I review the current knowledge of the processes that are common to most eukaryotes: microtubule nucleation at the spindle poles, bipolar spindle assembly, maintenance of the spindle structure, chromosome attachment to the spindle and chromosome separation on the spindle. 相似文献
17.
18.
Mitotic spindles isolated from sea urchin eggs can be reactivated to undergo mitotic processes in vitro. Spindles incubated in reactivation media containing sea urchin tubulin and nucleotides undergo pole-pole elongation similar to that observed in living cells during anaphase-B. The in vitro behavior of spindles isolated during metaphase and anaphase are compared. Both metaphase and anaphase spindles undergo pole-pole elongation with similar rates, but only in the presence of added tubulin. In contrast, metaphase but not anaphase spindles increase chromosome-pole distance in the presence of exogenous tubulin, suggesting that in vitro, tubulin can be incorporated at the kinetochores of metaphase but not anaphase chromosomes. The rate of spindle elongation, ultimate length achieved, and the increase in chromosome-pole distance for isolated metaphase spindles is related to the concentration of available tubulin. Pole-pole elongation and chromosome-pole elongation does not require added adenosine triphosphate (ATP). Guanosine triphosphate (GTP) will support all activities observed. Thus, the force generation mechanism for anaphase-B in isolated sea urchin spindles is independent of added ATP, but dependent on the availability of tubulin. These results support the hypothesis that the mechanism of force generation for anaphase-B is linked to the incorporation of tubulin into the mitotic apparatus. (If, in addition, a microtubule-dependent motor-protein(s) is acting to generate force, it does not appear to be dependent on ATP as the exclusive energy source. 相似文献
19.
Polymerized and depolymerized forms of tubulin were measured in rat and mouse liver, rat islets, human lymphocytes, and platelets. The percent of the total tubulin present in the polymerized form varied from 30.3 +/- 1.5% in the liver of the fed rat to 89.2 +/- 0.2% in human platelets. Fasting decreased the total tubulin and to a greater extent the polymerized form of tubulin in both rat and mouse liver. Glucose feeding increased the polymerized tubulin without affecting the total tubulin content in rat liver. Phytohemagglutinin-stimulated lymphocytes exhibited at least a three-fold increase in total tubulin (expressed in terms of DNA content), which during the initial 48 h of incubation was accounted for in toto by an increase in polymerized tubulin. It is suggested that the lectin not only accelerates tubulin synthesis but also stimulated the polymerization process. Storage of platelets at 4 degrees C for 6 days resulted in a marked decrease in total tubulin and an even greater reduction in the polymerized form. It is concluded that both the total tubulin content and its degree of polymerization can be modulated independently by a wide variety of physiological factors. 相似文献
20.
Interphase-specific phosphorylation-mediated regulation of tubulin dimer partitioning in human cells
下载免费PDF全文

The microtubule cytoskeleton is differentially regulated by a diverse array of proteins during interphase and mitosis. Op18/stathmin (Op18) and microtubule-associated protein (MAP)4 have been ascribed opposite general microtubule-directed activities, namely, microtubule destabilization and stabilization, respectively, both of which can be inhibited by phosphorylation. Here, using three human cell models, we depleted cells of Op18 and/or MAP4 by expression of interfering hairpin RNAs and we analyzed the resulting phenotypes. We found that the endogenous levels of Op18 and MAP4 have opposite and counteractive activities that largely govern the partitioning of tubulin dimers in the microtubule array at interphase. Op18 and MAP4 were also found to be the downstream targets of Ca(2+)- and calmodulin-dependent protein kinase IV and PAR-1/MARK2 kinase, respectively, that control the demonstrated counteractive phosphorylation-mediated regulation of tubulin dimer partitioning. Furthermore, to address mechanisms regulating microtubule polymerization in response to cell signals, we developed a system for inducible gene product replacement. This approach revealed that site-specific phosphorylation of Op18 is both necessary and sufficient for polymerization of microtubules in response to the multifaceted signaling event of stimulation of the T cell antigen receptor complex, which activates several signal transduction pathways. 相似文献