首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The F-plasmid-encoded TraI protein, also known as DNA helicase I, is a bifunctional protein required for conjugative DNA transfer. The enzyme catalyzes two distinct but functionally related reactions required for the DNA processing events associated with conjugation: the site- and strand-specific transesterification (relaxase) reaction that provides the nick required to initiate strand transfer and a processive 5'-to-3' helicase reaction that provides the motive force for strand transfer. Previous studies have identified the relaxase domain, which encompasses the first approximately 310 amino acids of the protein. The helicase-associated motifs lie between amino acids 990 and 1450. The function of the region between amino acids 310 and 990 and the region from amino acid 1450 to the C-terminal end is unknown. A protein lacking the C-terminal 252 amino acids (TraIDelta252) was constructed and shown to have essentially wild-type levels of transesterase and helicase activity. In addition, the protein was capable of a functional interaction with other components of the minimal relaxosome. However, TraIDelta252 was not able to support conjugative DNA transfer in genetic complementation experiments. We conclude that TraIDelta252 lacks an essential C-terminal domain that is required for DNA transfer. We speculate this domain may be involved in essential protein-protein interactions with other components of the DNA transfer machinery.  相似文献   

2.
Bacteria commonly exchange genetic information by the horizontal transfer of conjugative plasmids. In gram-negative conjugation, a relaxase enzyme is absolutely required to prepare plasmid DNA for transit into the recipient via a type IV secretion system. Here we report a mutagenesis of the F plasmid relaxase gene traI using in-frame, 31-codon insertions. Phenotypic analysis of our mutant library revealed that several mutant proteins are functional in conjugation, highlighting regions of TraI that can tolerate insertions of a moderate size. We also demonstrate that wild-type TraI, when overexpressed, plays a dominant-negative regulatory role in conjugation, repressing plasmid transfer frequencies approximately 100-fold. Mutant TraI proteins with insertions in a region of approximately 400 residues between the consensus relaxase and helicase sequences did not cause conjugative repression. These unrestrictive TraI variants have normal relaxase activity in vivo, and several have wild-type conjugative functions when expressed at normal levels. We postulate that TraI negatively regulates conjugation by interacting with and sequestering some component of the conjugative apparatus. Our data indicate that the domain responsible for conjugative repression resides in the central region of TraI between the protein's catalytic domains.  相似文献   

3.
Early in F plasmid conjugative transfer, the F relaxase, TraI, cleaves one plasmid strand at a site within the origin of transfer called nic. The reaction covalently links TraI Tyr16 to the 5'-ssDNA phosphate. Ultimately, TraI reverses the cleavage reaction to circularize the plasmid strand. The joining reaction requires a ssDNA 3'-hydroxyl; a second cleavage reaction at nic, regenerated by extension from the plasmid cleavage site, may generate this hydroxyl. Here we confirm that TraI is transported to the recipient during transfer. We track the secondary cleavage reaction and provide evidence it occurs in the donor and F ssDNA is transferred to the recipient with a free 3'-hydroxyl. Phe substitutions for four Tyr within the TraI active site implicate only Tyr16 in the two cleavage reactions required for transfer. Therefore, two TraI molecules are required for F plasmid transfer. Analysis of TraI translocation on various linear and circular ssDNA substrates supports the assertion that TraI slowly dissociates from the 3'-end of cleaved F plasmid, likely a characteristic essential for plasmid re-circularization.  相似文献   

4.
We have characterized a previously unidentified gene, trbC, which is contained in the transfer region of the Escherichia coli K-12 fertility factor, F. Our data show that the trbC gene is located between the F plasmid genes traU and traN. The product of trbC was identified as a polypeptide with an apparent molecular weight (Ma) of 23,500 that is processed to an Ma-21,500 mature protein. When ethanol was present, the Ma-23,500 polypeptide accumulated; the removal of ethanol resulted in the appearance of the processed mature protein. Subcellular fractionation experiments demonstrated that the processed, Ma-21,500 mature protein was located in the periplasm. DNA sequence analysis showed that trbC encodes a 212-amino-acid Mr-23,432 polypeptide that could be processed to a 191-amino-acid Mr-21,225 mature protein through the removal of a typical amino-terminal signal sequence. We also constructed two different Kmr gene insertion mutations in trbC and crossed these onto the transmissible F plasmid derivative pOX38. We found that cells carrying pOX38 trbC mutant plasmids were transfer deficient and resistant to infection by F-pilus-specific phages. Transfer proficiency and bacteriophage sensitivity were restored by complementation when a trbC+ plasmid clone was introduced into these cells. These results showed that trbC function is essential to the F plasmid conjugative transfer system and suggested that the TrbC protein participates in F-pilus assembly.  相似文献   

5.
The IncF plasmid protein TraI functions during bacterial conjugation as a site- and strand-specific DNA transesterase and a highly processive 5' to 3' DNA helicase. The N-terminal DNA transesterase domain of TraI localizes the protein to nic and cleaves this site within the plasmid transfer origin. In the cell the C-terminal DNA helicase domain of TraI is essential for driving the 5' to 3' unwinding of plasmid DNA from nic to provide the strand destined for transfer. In vitro, however, purified TraI protein cannot enter and unwind nicked plasmid DNA and instead requires a 5' tail of single-stranded DNA at the duplex junction. In this study we evaluate the extent of single-stranded DNA adjacent to the duplex that is required for efficient TraI-catalyzed DNA unwinding in vitro. A series of linear partial duplex DNA substrates containing a central stretch of single-stranded DNA of defined length was created and its structure verified. We found that substrates containing >or=27 nucleotides of single-stranded DNA 5' to the duplex were unwound efficiently by TraI, whereas substrates containing 20 or fewer nucleotides were not. These results imply that during conjugation localized unwinding of >20 nucleotides at nic is necessary to initiate unwinding of plasmid DNA strands.  相似文献   

6.
Plasmid selection and strand replacement synthesis in donor cells during conjugative transfer was examined by a procedure involving electroporation of test plasmid DNA, containing a base pair mismatch, into donor cells prior to mating. Multiple copies of the plasmid were transferred from a donor cell that allowed vegetative replication of the plasmid. Under conditions non-permissive for vegetative replication, there were further rounds of transfer after a lag period. Strand replacement in the donor did not depend solely on the initiation mechanism for vegetative replication, indicating a conjugation-specific mechanism was also available. The lag period between first and second rounds of transfer argues against the transfer of multiple copies into recipients by the spooling of copies generated on a master molecule by rolling-circle replication.  相似文献   

7.
TraI, a bifunctional enzyme containing relaxase and helicase activities, initiates and drives the conjugative transfer of the Escherichia coli F plasmid. Here, we examined the structure and function of the TraI helicase. We show that TraI binds to single-stranded DNA (ssDNA) with a site size of ~25 nucleotides, which is significantly longer than the site size of other known superfamily I helicases. Low cooperativity was observed with the binding of TraI to ssDNA, and a double-stranded DNA-binding site was identified within the N-terminal region of TraI 1-858, outside the core helicase motifs of TraI. We have revealed that the affinity of TraI for DNA is negatively correlated with the ionic strength of the solution. The binding of AMPPNP or ADP results in a 3-fold increase in the affinity of TraI for ssDNA. Moreover, TraI prefers to bind ssDNA oligomers containing a single type of base. Finally, we elucidated the solution structure of TraI using small angle x-ray scattering. TraI exhibits an ellipsoidal shape in solution with four domains aligning along one axis. Taken together, these data result in the assembly of a model for the multidomain helicase activity of TraI.  相似文献   

8.
D Balzer  W Pansegrau    E Lanka 《Journal of bacteriology》1994,176(14):4285-4295
Two essential transfer genes of the conjugative plasmid RP4 were altered by site-directed mutagenesis: traG of the primase operon and traI of the relaxase operon. To evaluate effects on the transfer phenotype of the point mutations, we have reconstituted the RP4 transfer system by fusion of the transfer regions Tra1 and Tra2 to the small multicopy replicon ColD. Deletions in traG or traI served to determine the Tra phenotype of mutant plasmids by trans complementation. Two motifs of TraG which are highly conserved among TraG-like proteins in several other conjugative DNA transfer systems were found to be essential for TraG function. One of the motifs resembles that of a nucleotide binding fold of type B. The relaxase (TraI) catalyzes the specific cleaving-joining reaction at the transfer origin needed to initiate and terminate conjugative DNA transfer (W. Pansegrau, W. Schröder, and E. Lanka, Proc. Natl. Acad. Sci. USA 90:2925-2929, 1993). Phenotypes of mutations in three motifs that belong to the active center of the relaxase confirmed previously obtained biochemical evidence for the contributions of the motifs to the catalytic activity of TraI. Expression of the relaxase operon is greatly increased in the absence of an intact TraI protein. This finding suggests that the relaxosome which assembles only in the presence of the TraI in addition to its enzymatic activity plays a role in gene regulation.  相似文献   

9.
RNA helicase A (RHA), a DExD/H box protein, plays critical roles in a wide variety of cellular or viral functions. RHA contains a conserved core helicase domain that is flanked by five other domains. Two double-stranded RNA binding domains (dsRBD1 and dsRBD2) are at the N-terminus, whereas HA2 (helicase associated 2), OB-fold (oligonucleotide- or oligosaccharide-binding fold), and RGG (repeats of arginine and glycine–glycine residues) domains are at the C-terminus. The role of these domains in the helicase activity of RHA is still elusive due to the difficulty of obtaining enzymatically active mutant RHA. Here, we purified a series of mutant RHAs containing deletions in either N-terminus or C-terminus. Analysis of these mutant RHAs reveals that the dsRBDs are not required for RNA unwinding, but can enhance the helicase activity by promoting the binding of RHA to substrate RNA. In contrast, deletion of C-terminal domains including RGG, OB-fold, and HA2 does not significantly affect the binding of RHA to substrate RNA. However, HA2 is essential for the RNA unwinding by RHA whereas the RGG and OB-fold are dispensable. The results indicate that the core helicase domain alone is not enough for RHA to execute the unwinding activity.  相似文献   

10.
Site-specific and strand-specific nicking at the origin of transfer (oriT) of the F sex factor is the initial step in conjugal DNA metabolism. Then, DNA helicase I, the product of the traI gene, processively unwinds the plasmid from the nick site to generate the single strand of DNA that is transferred to the recipient. The nick at oriT is produced by the combined action of two Tra proteins, TraY and TraZ. The traZ gene was never precisely mapped, as no available point mutation uniquely affected TraZ-dependent oriT nicking. With several new mutations, we have demonstrated that TraZ activity is dependent upon traI DNA sequences. The simplest interpretation of this finding is that the F TraI protein is bifunctional, with DNA unwinding and site-specific DNA nicking activities.  相似文献   

11.
The conjugative tetracycline resistance plasmid pCW3 is the paradigm conjugative plasmid in the anaerobic gram-positive pathogen Clostridium perfringens. Two closely related FtsK/SpoIIIE homologs, TcpA and TcpB, are encoded on pCW3, which is significant since FtsK domains are found in coupling proteins of gram-negative conjugation systems. To develop an understanding of the mechanism of conjugative transfer in C. perfringens, we determined the role of these proteins in the conjugation process. Mutation and complementation analysis was used to show that the tcpA gene was essential for the conjugative transfer of pCW3 and that the tcpB gene was not required for transfer. Furthermore, complementation of a pCW3DeltatcpA mutant with divergent tcpA homologs provided experimental evidence that all of the known conjugative plasmids from C. perfringens use a similar transfer mechanism. Functional genetic analysis of the TcpA protein established the essential role in conjugative transfer of its Walker A and Walker B ATP-binding motifs and its FtsK-like RAAG motif. It is postulated that TcpA is the essential DNA translocase or coupling protein encoded by pCW3 and as such represents a key component of the unique conjugation process in C. perfringens.  相似文献   

12.
When two, directly-repeated copies of the origin of transfer (oriT) of the conjugatively mobilizable, broad host-range plasmid R1162 are cloned into bacteriophage M13mp9 DNA, they undergo recombination in the presence of one of the R1162-encoded proteins required for mobilization [Meyer, R. (1989) J. Bacteriol., 171, 799-806]. Mutations in the outer arm of the inverted repeat within oriT inhibit this recombination. These mutations also affect a late step in transfer. We propose that recombination on the phage DNA models the processing of single-stranded DNA after entry into a recipient cell. The two, directly-repeated oriTs are not equivalent during the recombination reaction, because they are differently affected by the outer-arm mutations. A mutation was also isolated that reduces the specificity of the cleavage site in one of the two oriTs. Together, the results with the mutations suggest that phage recombinants can form only when the first cleavage occurs at one of the two oriTs. This is followed by the resulting free 3' end joining to the 5' end at the cleavage site of the other oriT.  相似文献   

13.
We have constructed a RP4 KorB overproducing strain and purified the protein to near homogeneity. KorB is a DNA binding protein recognizing defined palindromic 13-bp sequences (TTTAGCSGCTAAA). Inverted sequence repetitions of this type, designated OB, are present on RP4 12 times. OB-sequences are localized in replication and maintenance regions as well as in the regions Tra1 and Tra2 essential for conjugative transfer. All sites found in Tra regions by computer search act as targets for specific binding of KorB protein. KorB-DNA complexes were detected by DNA fragment retardation assay using polyacrylamide gels. The 13-bp symmetric arrangement of the consensus OB-sequence constitutes the core for binding KorB protein since any truncation of this sequence prevents complex assembly or leads to a considerable destabilization of the KorB-DNA complexes. A hydroxyl radical footprint analysis demonstrated complex formation of KorB with the OB-sequence directly and suggests the presence of an unusual DNA structure within the nucleoprotein complex.  相似文献   

14.
Bacterial conjugation normally involves the unidirectional transfer of DNA from donor to recipient. Occasionally, conjugation results in the transfer of DNA from recipient to donor, a phenomenon known as retrotransfer. Two distinct models have been generally considered for the mechanism of retrotransfer. In the two-way conduction model, no transfer of the conjugative plasmid is required. The establishment of a single conjugation bridge between donor and recipient is sufficient for the transfer of DNA in both directions. In the one-way conduction model, transfer of the conjugative plasmid to the recipient is required to allow the synthesis of a new conjugation bridge for the transfer of DNA from recipient to donor. We have tested these models by the construction of a mutant of the self-transmissible, IncP plasmid RK2lac that allows the establishement of the conjugation bridge but is incapable of self-transfer. Four nucleotides of the nic region of the origin of transfer (oriT) were changed directly in the 67-kb plasmid RK2lac by a simple adaptation of the vector-mediated excision (VEX) strategy for precision mutagenesis of large plasmids (E. K.Ayres, V. J. Thomson, G. Merino, D. Balderes, and D. H. Figurski, J. Mol. Biol. 230:174-185, 1993). The resulting RK2lac oriT1 mutant plasmid mobilizes IncQ or IncP oriT+ plasmids efficiently but transfers itself at a frequency which is 10(4)-fold less than that of the wild type. Whereas the wild-type RK2lac oriT+ plasmid promotes the retrotransfer of an IncQ plasmid from Escherichia coli or Pseudomonas aeruginosa recipients, the RK2lac oriT1 mutant is severely defective in retrotransfer. Therefore, retrotransfer requires prior transfer of the conjugative plasmid to the recipient. The results prove that retrotransfer occurs by two sequential DNA transfer events.  相似文献   

15.
Hepatitis C virus (HCV) is a positive-strand RNA virus that encodes a helicase required for viral replication. Although HCV does not replicate through a DNA intermediate, HCV helicase unwinds both RNA and DNA duplexes. An X-ray crystal structure of the HCV helicase complexed with (dU)(8) has been solved, and the substrate-amino acids interactions within the catalytic pocket were shown. Among these, residues W501 and V432 were reported to have base stacking interactions and to be important for the unwinding function of HCV helicase. It has been hypothesized that specific interactions between the enzyme and substrate in the catalytic pocket are responsible for the substrate specificity phenotype. We therefore mutagenized W501 and V432 to investigate their role in substrate specificity in HCV helicase. Replacement of W501, but not V432, with nonaromatic residues resulted in complete loss of RNA unwinding activity, whereas DNA unwinding activity was largely unaffected. The loss of unwinding activity was fully restored in the W501F mutant, indicating that the aromatic ring is crucial for RNA helicase function. Analysis of ATPase and nucleic acid binding activities in the W501 mutant enzymes revealed that these activities are not directly responsible for the substrate specificity phenotype. Molecular modeling of the enzyme-substrate interaction at W501 revealed a putative pi-facial hydrogen bond between the 2'-OH of ribose and the aromatic tryptophan ring. This evidence correlates with biochemical results suggesting that the pi-facial bond may play an important role in the RNA unwinding activity of the HCV NS3 protein.  相似文献   

16.
Yu M  Masker W 《Journal of bacteriology》2001,183(6):1862-1869
An in vitro system based on Escherichia coli infected with bacteriophage T7 was used to test for involvement of host and phage recombination proteins in the repair of double strand breaks in the T7 genome. Double strand breaks were placed in a unique XhoI site located approximately 17% from the left end of the T7 genome. In one assay, repair of these breaks was followed by packaging DNA recovered from repair reactions and determining the yield of infective phage. In a second assay, the product of the reactions was visualized after electrophoresis to estimate the extent to which the double strand breaks had been closed. Earlier work demonstrated that in this system double strand break repair takes place via incorporation of a patch of DNA into a gap formed at the break site. In the present study, it was found that extracts prepared from uninfected E. coli were unable to repair broken T7 genomes in this in vitro system, thus implying that phage rather than host enzymes are the primary participants in the predominant repair mechanism. Extracts prepared from an E. coli recA mutant were as capable of double strand break repair as extracts from a wild-type host, arguing that the E. coli recombinase is not essential to the recombinational events required for double strand break repair. In T7 strand exchange during recombination is mediated by the combined action of the helicase encoded by gene 4 and the annealing function of the gene 2.5 single strand binding protein. Although a deficiency in the gene 2.5 protein blocked double strand break repair, a gene 4 deficiency had no effect. This argues that a strand transfer step is not required during recombinational repair of double strand breaks in T7 but that the ability of the gene 2.5 protein to facilitate annealing of complementary single strands of DNA is critical to repair of double strand breaks in T7.  相似文献   

17.
Prior to conjugative transfer of plasmids, one plasmid strand is cleaved in a site- and strand-specific manner by an enzyme called a relaxase or nickase. In F and related plasmids, an inverted repeat is located near the plasmid strand cleavage site, and others have proposed that the ability of this sequence to form a hairpin when in single-stranded form is important for transfer. Substitutions were introduced into a cloned F oriT region and their effects on plasmid transfer were assessed. For those substitutions that substantially reduced transfer, the results generally correlated with effects on in vitro binding of oligonucleotides to the F TraI relaxase domain rather than with predicted effects on hairpin formation. One substitution shown previously to dramatically reduce both plasmid transfer and in vitro binding to a 17-base oligonucleotide had little apparent effect on binding to a 30-base oligonucleotide that contained the hairpin region. Results from subsequent experiments strongly suggest that the relaxase domain can bind to hairpin oligonucleotides in two distinct manners with different sequence specificities, and that the protein binds the oligonucleotides at the same or overlapping sites.  相似文献   

18.
PcrA is a conserved DNA helicase present in all gram-positive bacteria. Bacteria lacking PcrA show high levels of recombination. Lethality induced by PcrA depletion can be overcome by suppressor mutations in the recombination genes recFOR. RecFOR proteins load RecA onto single-stranded DNA during recombination. Here we test whether an essential function of PcrA is to interfere with RecA-mediated DNA recombination in vitro. We demonstrate that PcrA can inhibit the RecA-mediated DNA strand exchange reaction in vitro. Furthermore, PcrA displaced RecA from RecA nucleoprotein filaments. Interestingly, helicase mutants of PcrA also displaced RecA from DNA and inhibited RecA-mediated DNA strand exchange. Employing a novel single-pair fluorescence resonance energy transfer-based assay, we demonstrate a lengthening of double-stranded DNA upon polymerization of RecA and show that PcrA and its helicase mutants can reverse this process. Our results show that the displacement of RecA from DNA by PcrA is not dependent on its translocase activity. Further, our results show that the helicase activity of PcrA, although not essential, might play a facilitatory role in the RecA displacement reaction.  相似文献   

19.
Bacterial conjugation, transfer of a single conjugative plasmid strand between bacteria, diversifies prokaryotic genomes and disseminates antibiotic resistance genes. As a prerequisite for transfer, plasmid-encoded relaxases bind to and cleave the transferred plasmid strand with sequence specificity. The crystal structure of the F TraI relaxase domain with bound single-stranded DNA suggests binding specificity is partly determined by an intrastrand three-way base-pairing interaction. We showed previously that single substitutions for the three interacting bases could significantly reduce binding. Here we examine the effect of single and double base substitutions at these positions on plasmid mobilization. Many substitutions reduce transfer, although the detrimental effects of some substitutions can be partially overcome by substitutions at a second site. We measured the affinity of the F TraI relaxase domain for several DNA sequence variants. While reduced transfer generally correlates with reduced binding affinity, some oriT variants transfer with an efficiency different than expected from their binding affinities, indicating ssDNA binding and cleavage do not correlate absolutely. Oligonucleotide cleavage assay results suggest the essential function of the three-base interaction may be to position the scissile phosphate for cleavage, rather than to directly contribute to binding affinity.  相似文献   

20.
F-like plasmids require a number of genes for conjugation, including tra operon genes and genes traM and traJ, which lie outside the tra operon. We now establish that a gene in the "leading region," gene 19, provides an important function during conjugation and RNA phage infection. Mutational inactivation of gene 19 on plasmid R1-16 by introduction of two nonpolar stop codons results in a 10-fold decrease in the conjugation frequency. Furthermore, infection studies with the male-specific bacteriophage R17 revealed that the phage is not able to form clear plaques in Escherichia coli cells carrying an R1-16 plasmid with the defective copy of gene 19. The total number of cells infected by phage R17 is reduced by a factor of 10. Both the conjugation- and infection-attenuated phenotypes caused by the defective gene 19 can be complemented in trans by introducing gene 19 alleles encoding the wild-type protein. Restoration of the normal phenotypes is also possible by introduction of the pilT gene encoded by the unrelated IncI plasmid R64. Our functional studies and similarities of protein 19 to proteins encoded by other DNA transfer systems, as well as the presence of a conserved motif in all of these proteins (indicative for a putative muramidase activity) suggest that protein 19 of plasmid R1 facilitates the passage of DNA during conjugation and entry of RNA during phage infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号