首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations.  相似文献   

2.
Somers MJ  Graf JA  Szykman M  Slotow R  Gusset M 《Oecologia》2008,158(2):239-247
We analysed 25 years (1980–2004) of demographic data on a small re-introduced population of endangered African wild dogs (Lycaon pictus) in Hluhluwe-iMfolozi Park (HiP), South Africa, to describe population and pack dynamics. As small populations of cooperative breeders may be particularly prone to Allee effects, this extensive data set was used to test the prediction that, if Allee effects occur, aspects of reproductive success, individual survival and population growth should increase with pack and population size. The results suggest that behavioural aspects of wild dogs rather than ecological factors (i.e. competitors, prey and rainfall) primarily have been limiting the HiP wild dog population, particularly a low probability of finding suitable mates upon dispersal at low pack number (i.e. a mate-finding Allee effect). Wild dogs in HiP were not subject to component Allee effects at the pack level, most likely due to low interspecific competition and high prey availability. This suggests that aspects of the environment can mediate the strength of Allee effects. There was also no demographic Allee effect in the HiP wild dog population, as the population growth rate was significantly negatively related to population size, despite no apparent ecological resource limitation. Such negative density dependence at low numbers indicates that behavioural studies of the causal mechanisms potentially generating Allee effects in small populations can provide a key to understanding their dynamics. This study demonstrates how aspects of a species’ social behaviour can influence the vulnerability of small populations to extinction and illustrates the profound implications of sociality for endangered species’ recovery. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Uncertainty in risks posed by emerging stressors such as synthetic hormones impedes conservation efforts for threatened vertebrate populations. Synthetic hormones often induce sex‐biased perturbations in exposed animals by disrupting gonad development and early life‐history stage transitions, potentially diminishing per capita reproductive output of depleted populations and, in turn, being manifest as Allee effects. We use a spatially explicit biophysical model to evaluate how sex‐biased perturbation in life‐history traits of individuals (maternal investment in egg production and male‐skewed sex allocation in offspring) modulates density feedback control of year‐class strength and recovery trajectories of a long‐lived, migratory fish—shovelnose sturgeon (Scaphirhynchus platorynchus)—under spatially and temporally dynamic synthetic androgen exposure and habitat conditions. Simulations show that reduced efficiency of maternal investment in gonad development prolonged maturation time, increased the probability of skipped spawning, and, in turn, shrunk spawner abundance, weakening year‐class strength. However, positive density feedback disappeared (no Allee effect) once the exposure ceased. By contrast, responses to the demographic perturbation manifested as strong positive density feedback; an abrupt shift in year‐class strength and spawner abundance followed after more than two decades owing to persistent negative population growth (a strong Allee effect), reaching an alternative state without any sign of recovery. When combined with the energetic perturbation, positive density feedback of the demographic perturbation was dampened as extended maturation time reduced the frequency of producing male‐biased offspring, allowing the population to maintain positive growth rate (a weak Allee effect) and gradually recover. The emergent patterns in long‐term population projections illustrate that sex‐biased perturbation in life‐history traits can interactively regulate the strength of density feedback in depleted populations such as Scaphirhynchus sturgeon to further diminish reproductive capacity and abundance, posing increasingly greater conservation challenges in chemically altered riverscapes.  相似文献   

4.
Mate searching is a key component of sexual reproduction that can have important implications for population viability, especially for the mate‐finding Allee effect. Interannual sperm storage by females may be an adaptation that potentially attenuates mate limitation, but the demographic consequences of this functional trait have not been studied. Our goal is to assess the effect of female sperm storage durability on the strength of the mate‐finding Allee effect and the viability of populations subject to low population density and habitat alteration. We used an individual‐based simulation model that incorporates realistic representations of the demographic and spatial processes of our model species, the spur‐thighed tortoise (Testudo graeca). This allowed for a detailed assessment of reproductive rates, population growth rates, and extinction probabilities. We also studied the relationship between the number of reproductive males and the reproductive rates for scenarios combining different levels of sperm storage durability, initial population density, and landscape alteration. Our results showed that simulated populations parameterized with the field‐observed demographic rates collapsed for short sperm storage durability, but were viable for a durability of one year or longer. In contrast, the simulated populations with a low initial density were only viable in human‐altered landscapes for sperm storage durability of 4 years. We find that sperm storage is an effective mechanism that can reduce the strength of the mate‐finding Allee effect and contribute to the persistence of low‐density populations. Our study highlights the key role of sperm storage in the dynamics of species with limited movement ability to facilitate reproduction in patchy landscapes or during population expansion. This study represents the first quantification of the effect of sperm storage durability on population dynamics in different landscapes and population scenarios.  相似文献   

5.
High propagule pressure is arguably the only consistent predictor of colonization success. More individuals enhance colonization success because they aid in overcoming demographic consequences of small population size (e.g. stochasticity and Allee effects). The number of founders can also have direct genetic effects: with fewer individuals, more inbreeding and thus inbreeding depression will occur, whereas more individuals typically harbour greater genetic variation. Thus, the demographic and genetic components of propagule pressure are interrelated, making it difficult to understand which mechanisms are most important in determining colonization success. We experimentally disentangled the demographic and genetic components of propagule pressure by manipulating the number of founders (fewer or more), and genetic background (inbred or outbred) of individuals released in a series of three complementary experiments. We used Bemisia whiteflies and released them onto either their natal host (benign) or a novel host (challenging). Our experiments revealed that having more founding individuals and those individuals being outbred both increased the number of adults produced, but that only genetic background consistently shaped net reproductive rate of experimental populations. Environment was also important and interacted with propagule size to determine the number of adults produced. Quality of the environment interacted also with genetic background to determine establishment success, with a more pronounced effect of inbreeding depression in harsh environments. This interaction did not hold for the net reproductive rate. These data show that the positive effect of propagule pressure on founding success can be driven as much by underlying genetic processes as by demographics. Genetic effects can be immediate and have sizable effects on fitness.  相似文献   

6.
Allee effects, positive effects of population size or density on per-capita fitness, are of broad interest in ecology and conservation due to their importance to the persistence of small populations and to range boundary dynamics. A number of recent studies have highlighted the importance of spatiotemporal variation in Allee effects and the resulting impacts on population dynamics. These advances challenge conventional understanding of Allee effects by reframing them as a dynamic factor affecting populations instead of a static condition. First, we synthesize evidence for variation in Allee effects and highlight potential mechanisms. Second, we emphasize the “Allee slope,” i.e., the magnitude of the positive effect of density on the per-capita growth rate, as a metric for demographic Allee effects. The more commonly used quantitative metric, the Allee threshold, provides only a partial picture of the underlying forces acting on population growth despite its implications for population extinction. Third, we identify remaining unknowns and strategies for addressing them. Outstanding questions about variation in Allee effects fall broadly under three categories: (1) characterizing patterns of natural variability; (2) understanding mechanisms of variation; and (3) implications for populations, including applications to conservation and management. Future insights are best achieved through robust interactions between theory and empiricism, especially through mechanistic models. Understanding spatiotemporal variation in the demographic processes contributing to the dynamics of small populations is a critical step in the advancement of population ecology.  相似文献   

7.
Dangerously few liaisons: a review of mate-finding Allee effects   总被引:1,自引:0,他引:1  
In this paper, we review mate-finding Allee effects from ecological and evolutionary points of view. We define ‘mate-finding’ as mate searching in mobile animals, and also as the meeting of gametes for sessile animals and plants (pollination). We consider related issues such as mate quality and choice, sperm limitation and physiological stimulation of reproduction by conspecifics, as well as discussing the role of demographic stochasticity in generating mate-finding Allee effects. We consider the role of component Allee effects due to mate-finding in generating demographic Allee effects (at the population level). Compelling evidence for demographic Allee effects due to mate-finding (as well as via other mechanisms) is still limited, due to difficulties in censusing rare populations or a failure to identify underlying mechanisms, but also because of fitness trade-offs, population spatial structure and metapopulation dynamics, and because the strength of component Allee effects may vary in time and space. Mate-finding Allee effects act on individual fitness and are thus susceptible to change via natural selection. We believe it is useful to distinguish two routes by which evolution can act to mitigate mate-finding Allee effects. The first is evolution of characteristics such as calls, pheromones, hermaphroditism, etc. which make mate-finding more efficient at low density, thus eliminating the Allee effect. Such adaptations are very abundant in the natural world, and may have arisen to avoid Allee effects, although other hypotheses are also possible. The second route is to avoid low density via adaptations such as permanent or periodic aggregation. In this case, the Allee effect is still present, but its effects are avoided. These two strategies may have different consequences in a world where many populations are being artificially reduced to low density: in the first case, population growth rate can be maintained, while in the second case, the mechanism to avoid Allee effects has been destroyed. It is therefore in these latter populations that we predict the greatest evidence for mate-finding Allee effects and associated demographic consequences. This idea is supported by the existing empirical evidence for demographic Allee effects. Given a strong effect that mate-finding appears to have on individual fitness, we support the continuing quest to find connections between component mate-finding Allee effects (individual reproductive fitness) and the demographic consequences. There are many reasons why such studies are difficult, but it is important, particularly given the increasing number of populations and species of conservation concern, that the ecological community understands more about how widespread demographic Allee effects really are, and why.  相似文献   

8.
Allee effects in stochastic populations   总被引:3,自引:0,他引:3  
Brian Dennis 《Oikos》2002,96(3):389-401
The Allee effect, or inverse density dependence at low population sizes, could seriously impact preservation and management of biological populations. The mounting evidence for widespread Allee effects has lately inspired theoretical studies of how Allee effects alter population dynamics. However, the recent mathematical models of Allee effects have been missing another important force prevalent at low population sizes: stochasticity. In this paper, the combination of Allee effects and stochasticity is studied using diffusion processes, a type of general stochastic population model that accommodates both demographic and environmental stochastic fluctuations. Including an Allee effect in a conventional deterministic population model typically produces an unstable equilibrium at a low population size, a critical population level below which extinction is certain. In a stochastic version of such a model, the probability of reaching a lower size a before reaching an upper size b , when considered as a function of initial population size, has an inflection point at the underlying deterministic unstable equilibrium. The inflection point represents a threshold in the probabilistic prospects for the population and is independent of the type of stochastic fluctuations in the model. In particular, models containing demographic noise alone (absent Allee effects) do not display this threshold behavior, even though demographic noise is considered an "extinction vortex". The results in this paper provide a new understanding of the interplay of stochastic and deterministic forces in ecological populations.  相似文献   

9.
Resident natural enemies can impact invasive species by causing Allee effects, leading to a reduction in establishment success of small founder populations, or by regulating or merely suppressing the abundance of established populations. Epiphyas postvittana, the Light Brown Apple Moth, an invasive leafroller in California, has been found to be attacked by a large assemblage of resident parasitoids that cause relatively high rates of parasitism. Over a 4-year period, we measured the abundance and per capita growth rates of four E. postvittana populations in California and determined parasitism rates. We found that at two of the sites, parasitism caused a component Allee effect, a reduction in individual survivorship at lower E. postvittana population densities, although it did not translate into a demographic Allee effect, an impact on per capita population growth rates at low densities. Instead, E. postvittana populations at all four sites exhibited strong compensatory density feedback throughout the entire range of densities observed at each site. As we found no evidence for a negative relationship between per capita population growth rates and parasitism rates, we concluded that resident parasitoids were unable to regulate E. postvittana populations in California. Despite a lack of evidence for regulation or a demographic Allee effect, the impact of resident parasitoids on E. postvittana populations is substantial and demonstrates significant biotic resistance against this new invader.  相似文献   

10.
A strong demographic Allee effect in which the expected population growth rate is negative below a certain critical population size can cause high extinction probabilities in small introduced populations. But many species are repeatedly introduced to the same location and eventually one population may overcome the Allee effect by chance. With the help of stochastic models, we investigate how much genetic diversity such successful populations harbor on average and how this depends on offspring-number variation, an important source of stochastic variability in population size. We find that with increasing variability, the Allee effect increasingly promotes genetic diversity in successful populations. Successful Allee-effect populations with highly variable population dynamics escape rapidly from the region of small population sizes and do not linger around the critical population size. Therefore, they are exposed to relatively little genetic drift. It is also conceivable, however, that an Allee effect itself leads to an increase in offspring-number variation. In this case, successful populations with an Allee effect can exhibit less genetic diversity despite growing faster at small population sizes. Unlike in many classical population genetics models, the role of offspring-number variation for the population genetic consequences of the Allee effect cannot be accounted for by an effective-population-size correction. Thus, our results highlight the importance of detailed biological knowledge, in this case on the probability distribution of family sizes, when predicting the evolutionary potential of newly founded populations or when using genetic data to reconstruct their demographic history.  相似文献   

11.
Kluth C  Bruelheide H 《Oecologia》2005,145(3):382-393
The central-marginal model assumes unfavourable and more variable environmental conditions at the periphery of a species’ distribution range to negatively affect demographic transition rates, finally resulting in reduced population sizes and densities. Previous studies on density-dependence as a crucial factor regulating plant population growth have mainly focussed on fecundity and survival. Our objective is to analyse density-dependence in combination with the effect of inter-annual variation and range position on all life stages of an annual plant species, Hornungia petraea, including germination and seed incorporation into the seed bank. As previous studies on H. petraea had revealed a pattern opposite to existing theory with lower population densities at the distribution centre in Italy than at the periphery in Germany, we hypothesised that (1) demographic transition rates are lower, (2) the inter-annual variation in demographic transition rates is higher and (3) the intensity of density-dependence is weaker in Italy than in Germany. To analyse demographic transition rates, we used an autoregressive covariance strategy for repeated measures including density and inter-annual variation. All the three hypotheses were confirmed, but the impact of range position, density-dependence and inter-annual variation differed among the transition steps. All transition rates except fecundity were higher in the German populations than in the Italian populations. Germination rate and incorporation rate into the seed bank were strongly density-dependent. Central populations showed a larger inter-annual variation in fecundity and winter survival rate. Winter survival rate was the only transition step with a stronger density-dependence in peripheral populations. In most cases, these differences between distribution centre and periphery would not have emerged without taking density-dependence and inter-annual variation into account. We conclude that including range position, inter-annual variation and density-dependence in one single statistical model is an important tool for the interpretation of demographic patterns regarding the central-marginal model. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

12.
Seed dormancy increases population size via bet-hedging and by limiting negative interactions (e.g., competition) among individuals. On the other hand, individuals also interact positively (e.g., facilitation), and in some systems, facilitation among juveniles precedes competition among adults in the same generation. Nevertheless, studies of the benefits of seed dormancy typically ignore facilitation. Using a population growth model, we ask how the facilitation–competition balance interacts with seed dormancy rate to affect population dynamics in constant and variable environments. Facilitation increases the growth rate and equilibrium size (in both constant and variable environments) and reduces the extinction rate of populations (in a variable environment), and a higher rate of seed dormancy allows populations with facilitation to reach larger sizes. However, the combined benefits of facilitation and a high dormancy rate only occur in large populations. In small populations, weak facilitation does not affect the growth rate, but does induce a weak demographic Allee effect (where population growth decreases with decreasing population size). Our results suggest that facilitation within populations can interact with bet-hedging traits (such as dormancy) or other traits that mediate density to affect population dynamics. Further, by ensuring survival but limiting reproduction, ontogenetic switches from facilitation to competition may enable populations to persist but limit their maximum size in variable environments. Such intrinsic regulation of populations could then contribute to the maintenance of similar species within communities.  相似文献   

13.
Identifying the main factors driving introduced populations to establishment is a major challenge of invasion biology. Due to their small initial size, introduced populations are most vulnerable to extinction because of demographic stochasticity or Allee effects. While an increase in initial population size is known to increase establishment success, much remains to be understood regarding its interplay with connectivity in spatially structured environments. In order to better understand how demographic mechanisms interact at such spatial scale, we developed a stochastic model of population dynamics in discrete space to investigate the effect of connectivity and initial population size on establishment. The predictions derived from the model were then tested using experimental introductions of an insect parasitoid (Trichogramma chilonis) in spatially structured laboratory microcosms. Both theoretical and experimental results demonstrated that the connectivity of the introduction site had 1) a deleterious effect in the first generation when the introduced population was small and 2) a beneficial impact brought about by metapopulation effects in the subsequent generations. Interestingly, populations displayed a weakly pushed invasion pattern promoting early establishment, which was mainly underpinned by dispersal stochasticity and the discrete nature of the landscape. These results shed light on the critical influence of landscape connectivity on establishment dynamics.  相似文献   

14.
Introductions of biological control organisms offer a unique opportunity to experimentally study the process of invasion by exotic species. I used two chrysomelid beetles, Galerucella calmariensis and Galerucella pusilla, which are currently being introduced into North America for the biological control of purple loosestrife (Lythrum salicaria), to determine how the initial size of a release affects the probability that the introduced population grows and persists. I released both species into stands of their host plant at 36 sites scattered throughout central New York State using four release sizes: 20, 60, 180, and 540. I returned to these sites over the next 3 years to census the populations. For both species, the probability of population establishment increased with release size. Population growth rates also depended positively on release size. The implication from these results is that the demographic factors whose influence depends on population size or density such as demographic stochasticity, Allee effects, and genetics play important roles in the establishment of invading populations. A second set of releases was used to determine if it was at all possible for a single gravid female to found a population. Out of twenty individual females released, one female (a G. calmariensis) founded a population that persisted until the end of the study (3 generations). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Harper EB  Semlitsch RD 《Oecologia》2007,153(4):879-889
Populations of species with complex life cycles have the potential to be regulated at multiple life history stages. However, research tends to focus on single stage density-dependence, which can lead to inaccurate conclusions about population regulation and subsequently hinder conservation efforts. In amphibians, many studies have demonstrated strong effects of larval density and have often assumed that populations are regulated at this life history stage. However, studies examining density regulation in the terrestrial stages are rare, and the functional relationships between terrestrial density and vital rates in amphibians are unknown. We determined the effects of population density on survival, growth and reproductive development in the terrestrial stage of two amphibians by raising juvenile wood frogs (Rana sylvatica) and American toads (Bufo americanus) at six densities in terrestrial enclosures. Density had strong negative effects on survival, growth and reproductive development in both species. We fitted a priori recruitment functions to describe the relationship between initial density and the density of survivors after one year, and determined the functional relationship between initial density and mass after one year. Animals raised at the lowest densities experienced growth and survival rates that were over twice as great as those raised at the highest density. All female wood frogs in the lowest density treatment showed signs of reproductive development, compared to only 6% in the highest density treatment. Female American toads reached minimum reproductive size only at low densities, and male wood frogs and American toads reached maturity only in the three lowest density treatments. Our results demonstrate that in the complex life cycle of amphibians, density in the terrestrial stage can reduce growth, survival and reproductive development and may play an important role in amphibian population regulation. We discuss the implications of these results for population regulation in complex life cycles and for amphibian conservation.  相似文献   

16.
Understanding the factors that influence successful colonization can help inform ecological theory and aid in the management of invasive species. When founder populations are small, individual fitness may be negatively impacted by component Allee effects through positive density dependence (e.g., mate limitation). Reproductive and survival mechanisms that suffer due to a shortage of conspecifics may scale up to be manifest in a decreased per-capita population growth rate (i.e., a demographic Allee effect). Mean-field population level models are limited in representing how component Allee effects scale up to demographic Allee effects when heterogeneous spatial structure influences conspecific availability. Thus, such models may not adequately characterize the probability of establishment. In order to better assess how individual level processes influence population establishment and spread, we developed a spatially explicit individual-based stochastic simulation of a small founder population. We found that increased aggregation can affect individual fitness and subsequently impact population growth; however, relatively slow dispersal—in addition to initial spatial structure—is required for establishment, ultimately creating a tradeoff between probability of initial establishment and rate of subsequent spread. Since this result is sensitive to the scaling up of component Allee effects, details of individual dispersal and interaction kernels are key factors influencing population level processes. Overall, we demonstrate the importance of considering both spatial structure and individual level traits in assessing the consequences of Allee effects in biological invasions.  相似文献   

17.
The fact that selfing increases seed set (reproductive assurance) has often been put forward as an important selective force for the evolution of selfing. However, the role of reproductive assurance in hermaphroditic populations is far from being clear because of a lack of theoretical work. Here, I propose a theoretical model that analyzes self-fertilization in the presence of reproductive assurance. Because reproductive assurance directly influences the per capita growth rate, I developed an explicit demographic model for partial selfers in the presence of reproductive assurance, specifically when outcrossing is limited by the possibility of pollen transfer (Allee effect). Mating system parameters are derived as a function of the underlying demographical parameters. The functional link between population demography and mating system parameters (reproductive assurance, selfing rate) can be characterized. The demographic model permits the analysis of the evolution of self-fertilization in stable populations when reproductive assurance occurs. The model reveals some counterintuitive results such as the fact that increasing the fraction of selfed ovules can, in certain circumstances, increase the fraction of outcrossed ovules. Moreover, I demonstrate that reproductive assurance per se cannot account for the evolution of stable mixed selfing rates. Also, the model reveals that the extinction of outcrossing populations depends on small changes in population density (ecological perturbations), while the transition from outcrossing to selfing can, in certain cases, lead the population to extinction (evolutionary suicide). More generally, this paper highlights the fact that self-fertilization affects both the dynamics of individuals and the dynamics of selfing genes in hermaphroditic populations.  相似文献   

18.
The Allee effect is a positive causal relationship between any component of fitness and population density or size. Allee effects strongly affect the persistence of small or sparse populations. Predicting Allee effects remains a challenge, possibly because not all causal mechanisms are known. We hypothesized that reproductive interference (an interspecific reproductive interaction that reduces the fitness of the species involved) can generate an Allee effect. If the density of the interfering species is constant, an increase in the population of the species receiving interference may dilute the per capita effect of reproductive interference and may generate an Allee effect. To test this hypothesis, we examined the effect of heterospecific males on the relationship between per capita fecundity and conspecific density in Callosobruchus chinensis and C. maculatus. Of the two species, only C. maculatus females suffer reproductive interference from heterospecific males. Only C. maculatus, the species susceptible to reproductive interference, demonstrated an Allee effect, and only when heterospecific males were present. In contrast, C. chinensis, the species not susceptible to reproductive interference, demonstrated no Allee effect regardless of the presence of heterospecific males. Our results show that reproductive interference in fact generated an Allee effect, suggesting the potential importance of interspecific sexual interactions especially in small or sparse populations, even in the absence of a shared resource. It may be possible to predict Allee effects produced by this mechanism a priori by testing reproductive interference between closely related species.  相似文献   

19.
The concept of density-dependent population growth is fundamental to our understanding of how populations persist. While it is generally agreed that negative density dependence must occur at high densities, the direction of density dependence may be negative (pure negative density dependence) or positive (demographic Allee effect) at low densities. In this article, we present a technique to link the direction of density dependence to generic ecological factors. This technique involves exploiting the presence of a particular bifurcation, known as a saddle-node-transcritical interaction. We first provide a method to detect this bifurcation in a given model and then demonstrate its ecological relevance using several existing mechanistic models. With a mathematical framework in place, we are able to identify scenarios in which neither a weak Allee effect nor pure negative density dependence are possible. More generally, we find conditions on parameter values that are necessary for transitions between pure negative density dependence and demographic Allee effects to occur.  相似文献   

20.
In this study, we examined the influence of demographic and environmental variables on the life histories of six remnant populations of the Andean catfishAstroblepus ubidiai (Actinopterygii; Siluriform) located in isolated refuges, and tested six predictions on the relationships between age at maturity, generation time, population density and juvenile and adult growth and survival rates. The three populations inhabiting the watershed with a direct connection to a major lake (Imbakucha) exhibited later maturity, a longer generation time, higher adult survivorship, a higher adult-to-juvenile survival ratio and lower biomass density than those of the adjacent, non-lacustrine watersheds. Across all six populations, there was a strong correlation between mean age at maturity and both the adult-to-juvenile survival ratio and biomass density. Study populations also showed a pattern of inverse density-dependence associated with Allee effects. We conclude that without limitations in the availability of environmental resources, higher population density can be negatively related to age at maturity. This relationship would be expected to become positive when carrying capacity of the systems is reached. Delayed maturity in the Imbakucha populations may be an adaptive response for increasing juvenile survival under stressful conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号