首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Resource acquisition is integral to maximise fitness, however in many ecosystems this requires adaptation to resource abundance and distributions that seldom stay constant. For predators, prey availability can vary at fine spatial and temporal scales as a result of changes in the physical environment, and therefore selection should favour individuals that can adapt their foraging behaviour accordingly. The tidal cycle is a short, yet predictable, temporal cycle, which can influence prey availability at temporal scales relevant to movement decisions. Here, we ask whether black‐legged kittiwakes Rissa tridactyla can adjust their foraging habitat selection according to the tidal cycle using GPS tracking studies at three sites of differing environmental heterogeneity. We used a hidden Markov model to classify kittiwake behaviour, and analysed habitat selection during foraging. As expected for a central‐place forager, we found that kittiwakes preferred to forage nearer to the breeding colony. However, we also show that habitat selection changed over the 12.4‐h tidal cycle, most likely because of changes in resource availability. Furthermore, we observed that environmental heterogeneity was associated with amplified changes in kittiwake habitat selection over the tidal cycle, potentially because environmental heterogeneity drives greater resource variation. Both predictable cycles and environmental heterogeneity are ubiquitous. Our results therefore suggest that, together, predictable cycles and environmental heterogeneity may shape predator behaviour across ecosystems.  相似文献   

6.
In this paper we show that the tabD mutants, selected with ts553 or tsCB53, and described in the accompanying paper (Coppo et al., 1975): (a) are recessive to tab+; (b) fail to complement each other, and thus map in the same cistron; (c) by their linkage to rif and their dominance relationships with well characterized amber mutations in the Escherichia coli RNA polymerase operon, probably all map in the gene controlling the synthesis of the β′ subunit of the enzyme. We also describe the isolation of a ts+, kD mutant in phage T4 gene 55, used in the selection of a new tabD mutant (tabDk292). This tab mutant: (a) generates a defective phenotype which differs somewhat from that of the other tabD mutants; (b) complements the other tabD mutants; (c) by its dominance relationship to amber mutants in the RNA polymerase operon, can be assigned to the structural gene coding for the β subunit of the enzyme.A new type of interaction between T4 genes 55 and 45 is also described. The kD properties of ts553 (gene 55) are suppressed at 30 °C, by a temperature-sensitive mutation in gene 45. This type of interaction between missense mutations in genes 45 and 55 apparently occurs even in tab+ strains, since temperature-sensitive mutations in gene 45 accumulate in lysates of two gene 55 mutants (ts553 and tsA81).  相似文献   

7.
Few immunotherapy compounds have demonstrated a direct link between the predicted mode of action of the product and benefit to the patient. Since cancer vaccines are thought to have a delayed therapeutic effect, identification of the active moiety may enable the development of an early marker of efficacy. Patients with renal cancer and requiring first-line treatment for metastatic disease were randomized 1:1 to receive MVA-5T4 (TroVax?) or placebo alongside Sunitinib, IL-2 or IFN-?? in a multicentre phase III trial. Antibody responses were quantified following the 3rd and 4th vaccinations. A surrogate for 5T4 antibody response (the immune response surrogate; IRS) was constructed and then used in a survival analysis to evaluate treatment benefit. Seven hundred and thirty-three patients were randomized, and immune responses were assessed in 590 patients. A high 5T4 antibody response was associated with longer survival within the MVA?C5T4-treated group. The IRS was constructed as a linear combination of pre-treatment 5T4 antibody levels, hemoglobin and hematocrit and was shown to be a significant predictor of treatment benefit in the phase III study. Importantly, the IRS was also associated with antibody response and survival in an independent dataset comprising renal, colorectal and prostate cancer patients treated with MVA?C5T4 in phase I?CII studies. The derivation of the IRS formed part of an exploratory, retrospective analysis; however, if confirmed in future studies, the results have important implications for the development and use of the MVA?C5T4 vaccine and potentially for other similar vaccines.  相似文献   

8.
9.
Glucocorticoids are widely used in the therapy of inflammatory, autoimmune, and allergic diseases. As the end-effectors of the hypothalamic-pituitary-adrenal axis, endogenous glucocorticoids also play an important role in suppressing innate and cellular immune responses. Previous studies have indicated that glucocorticoids inhibit Th1 and enhance Th2 cytokine secretion. IL-12 promotes Th1 cell-mediated immunity, while IL-4 stimulates Th2 humoral-mediated immunity. Here, we examined the regulatory effect of glucocorticoids on key elements of IL-12 and IL-4 signaling. We first investigated the effect of dexamethasone on IL-12-inducible genes and showed that dexamethasone inhibited IL-12-induced IFN-gamma secretion and IFN regulatory factor-1 expression in both NK and T cells. This occurred even though the level of expression of IL-12 receptors and IL-12-induced Janus kinase phosphorylation remained unaltered. However, dexamethasone markedly inhibited IL-12-induced phosphorylation of Stat4 without altering its expression. This was specific, as IL-4-induced Stat6 phosphorylation was not affected, and mediated by the glucocorticoid receptor, as it was antagonized by the glucocorticoid receptor antagonist RU486. Moreover, transfection experiments showed that dexamethasone reduced responsiveness to IL-12 through the inhibition of Stat4-dependent IFN regulatory factor-1 promoter activity. We conclude that blocking IL-12-induced Stat4 phosphorylation, without altering IL-4-induced Stat6 phosphorylation, appears to be a new suppressive action of glucocorticoids on the Th1 cellular immune response and may help explain the glucocorticoid-induced shift toward the Th2 humoral immune response.  相似文献   

10.
Bacteriophage T4-induced shut-off of host-specific translation.   总被引:2,自引:1,他引:1       下载免费PDF全文
To study the mechanism by which bacteriophage T4 inhibits the synthesis of inducible host enzymes we measured the formation of beta-galactosidase from preformed lac mRNA. Beta-Galactosidase was induced with isopropyl-beta-D-thiogalactopyranoside in the presence of 7-azatryptophan, a tryptophan analogue that is incorporated into proteins and renders the beta-galactosidase formed inactive. The accumulated las mRNA was measured by capacity to form active beta-galactosidase after a chase of the analogue with excess tryptophan. After T4 infection the ability to form beta-galactosidase from the preformed lac mRNA was rapidly lost even when T4 infection took place in the presence of rifampin. This restriction was dependent on the multiplicity of infection. At a multiplicity of infection of 8.6, 90% of the ability to express preformed lac mRNA was lost within 30 s. The kinetics of cessation of beta-galactosidase synthesis after T4 infection indicate that infection blocks initiation of lac mRNA translation.  相似文献   

11.
12.
Bacteriophage T3-induced RNA polymerase is rapidly inactivated at 42 degrees C. Addition of T3 DNA delays this process for 30 s and reduces the rate with which the enzyme activity is lost indicating that a labile binary complex between T3 DNA and polymerase must have been formed. The ternary complex between T3-specific RNA polymerase, T3 DNA, and nascent RNA chains obtained when the enzyme is incubated with T3 DNA, GTP, ATP, and UTP is stable to heat (42 degrees C) and only slowly inactivated by polyvinyl sulfate. The optimal temperature for the formation of polyanionresistant ternary complexes is 30 degrees C while the elongation of T3 RNA chains proceeds fastest at 38 degrees C.  相似文献   

13.
14.
Processivity in early stages of transcription by T7 RNA polymerase   总被引:19,自引:0,他引:19  
  相似文献   

15.
The influence of temporal and spatial heterogeneity in seed availability on the foraging behaviour of the harvester ant Messor arenarius was studied in an arid shrubland in the Negev Desert, Israel. The study investigated the implications of behavioural responses to heterogeneity in seed availability for the seed predation process and the potential for feedback effects on vegetation. Vegetation and seed rain were monitored across two landscape patch types (shrub patches and inter-shrub patches) in 1997. Shrub patches were shown to have higher plant and seed-rain density than inter-shrub patches. Patch use and seed selection by M. arenarius foragers were monitored through the spring, summer and autumn of 1997. After a pulse of seed production in the spring, the ants exhibited very narrow diet breadth, specialising on a single annual grass species, Stipa capensis. At this time, ants were foraging and collecting seeds mainly from inter-shrub patches. In the summer, diet breadth broadened and use of shrub patches increased, although the rate of seed collection per unit area was approximately equal in the two patch types. The increase in the use of shrub patches was due to colony-level selection of foraging areas with relatively high shrub cover and an increase in the use of shrub patches by individual foragers. In the autumn, a pulse of seed production by the shrub species Atractylis serratuloides and Noaea mucronata led to a reduction in diet breadth as foragers specialised on these species. During this period, foragers exhibited a large increase in the proportion of time spent in shrub patches and in the proportion of food items collected from shrub patches. The seasonal patterns in foraging behaviour showed linked changes in seed selection and patch use resulting in important differences in the seed predation process between the two landscape patch types. For much of the study period, there was higher seed predation pressure on the inter-shrub patches, which were of relatively low productivity compared with the shrub patches. This suggests that the seed predation process may help maintain the spatial heterogeneity in the density of ephemeral plants in the landscape.  相似文献   

16.
RNA ligase has been extensively purified by a new procedure in high yield from T4-infected Escherichia coli. The enzyme consists of a single polypeptide chain of molecular weight 47,000. It catalyzes the formation of a phosphodiester bond between a 5′-PO4-terminated oligonucleotide and a 3′-OH terminated oligonucleotide. The purified enzyme catalyzes both the intramolecular formation of single-stranded circles with longer oligonucleotides of the type pAp(Ap)nA?OH, where n is about 15 or greater and the intermolecular joining of pAp(Ap)3AOH (where the 5′-PO4-terminated oligonucleotide is short enough to prevent apposition of its 3′ and 5′ ends) to UpUpUOH when high concentrations of the 3′-OH-terminated acceptor oligonucleotide are present. Preparations of RNA ligase at all stages of purification show an unusual dependence of specific activity of the enzyme on the concentration of enzyme present in the assay. However, when care is taken to determine meaningful specific activities at each step, the ligase is found to be very stable during chromatography on various ion-exchange columns and may be purified by conventional techniques.  相似文献   

17.
Yosef N  Regev A 《Cell》2011,144(6):886-896
Regulatory circuits controlling gene expression constantly rewire to adapt to environmental stimuli, differentiation cues, and disease. We review our current understanding of the temporal dynamics of gene expression in eukaryotes and prokaryotes and the molecular mechanisms that shape them. We delineate several prototypical temporal patterns, including "impulse" (or single-pulse) patterns in response to transient environmental stimuli, sustained (or state-transitioning) patterns in response to developmental cues, and oscillating patterns. We focus on impulse responses and their higher-order temporal organization in regulons and cascades and describe how core protein circuits and cis-regulatory sequences in promoters integrate with chromatin architecture to generate these responses.  相似文献   

18.
A preparation of bacteriophage T4-induced deoxyribonucleotide synthetase complex is described. This very large complex of enzymes can be separated by centrifugation at 100,000 X g, by sucrose step gradient centrifugation, or with molecular exclusion columns. By direct assay and by unidimensional and two-dimensional acrylamide electrophoretic separations the following T4-coded enzymes were shown to be associated with the complex: ribonucleoside diphosphate reductase, dCMP deaminase, dCTP/dUTPase, dCMP hydroxymethylase, dTMP synthetase, and DNA polymerase. Other phage-coded prereplicative proteins related to DNA replication and other phage functions such as the proteins coded by genes 32, 46, rIIA, and rIIB as well as many unidentified proteins were also consistently associated with the isolated fractions. T4 DNA topoisomerase, a membrane-bound enzyme, was found in quantity in all purified fractions of the complex, even in preparations apparently free of membrane and of T4 DNA. The functional integrity of a segment of the complex was followed by measuring the conversion of [5-3H]CDP to the level of 5-hydroxymethyl dCMP. This series of reactions requires the actions of T4-coded ribonucleoside diphosphate reductase and its associated reducing system, dCTP/dUTPase and dCMP hydroxymethylase, 3H being lost to water at the last step. In this reaction sequence an intermediate, [5-3H]dCMP, is maintained at low steady state concentrations, and argument is presented that the synthesis of deoxyribonucleotides is channeled and normally tightly coupled to DNA replication. One of the primary characteristics of this complex is its ready dissociation of dilution into smaller complexes of proteins and to the free forms of the proteins. That the complex is held together by weak electrostatic forces was supported by its sensitivity to dissociation at moderate salt concentrations. Not only the enzymes required in deoxyribonucleotide synthesis but T4 DNA polymerase, T4 DNA topoisomerase, and a number of other proteins dissociate to varying degrees from the larger complexes under these conditions.  相似文献   

19.
20.
Ribonucleotide reductase induced by bacteriophage T4 in Escherichia coli contains an organic free radical necessary for enzymatic activity. Its EPR spectrum at 77K is similar to but not identical with that of the corresponding radical in the enzyme from uninfected E. coli studied previously. Isotope substitutions now show that the radical in the T4-induced enzyme also is localized to a tyrosine residue with its spin density delocalized over the aromatic ring of tyrosine. The difference between the radicals of the T4-induced and the E. coli ribonucleotide reductases, as reflected in the hyperfine patterns of their EPR spectra, is suggested to be due to slightly different radical geometries, resulting from a twist of about 10 degrees around the bond between the aromatic ring and the methylene group in the tyrosine radical. Hydroxyurea destroys the free radicals of both ribonucleotide reductases and also their catalytic activities. Both enzymes are considerably more sensitive to hydroxyurea during catalysis than in the noncatalytic state. However, when compared to the bacterial ribonucleotide reductase, the T4-induced enzyme shows an overall approximately 10 times higher sensitivity to hydroxyurea, judging from the drug concentrations needed to destroy the radicals and inhibit the activities. This result may reflect a difference in accessibility for the drug to the active sites of the enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号