首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
Four strains of Butyrivibrio fibrisolvens did not degrade aflatoxin B1. Acetyl T-2 toxin, T-2 toxin, HT-2 toxin, deoxynivalenol, diacetoxyscirpenol, verrucarin A, zearalenone, and ochratoxin A did not affect the specific growth rate of B. fibrisolvens CE51 significantly, but all were degraded to greater or lesser extents. Breakdown products were produced as a result of deacetylation reactions.  相似文献   

2.
T-2 toxin metabolism by ruminal bacteria and its effect on their growth   总被引:3,自引:0,他引:3  
The effect of T-2 toxin on the growth rates of different bacteria was used as a measure of its toxicity. Toxin levels of 10 micrograms/ml did not decrease the growth rate of Selenomonas ruminantium and Anaerovibrio lipolytica, whereas the growth rate of Butyrivibrio fibrisolvens was uninhibited at toxin levels as high as 1 mg/ml. There was, however, a noticeable increase in the growth rate of B. fibrisolvens CE46 and CE51 and S. ruminantium in the presence of low concentrations (10 micrograms/ml) of T-2 toxin, which may indicate the assimilation of the toxin as an energy source by these bacteria. Three tributyrin-hydrolyzing bacterial isolates did not grow at all in the presence of T-2 toxin (10 micrograms/ml). The growth rate of a fourth tributyrin-hydrolyzing bacterial isolate was unaffected. B. fibrisolvens CE51 degraded T-2 toxin to HT-2 toxin (22%), T-2 triol (3%), and neosolaniol (10%), whereas A. lipolytica and S. ruminantium degraded the toxin to HT-2 toxin (22 and 18%, respectively) and T-2 triol (7 and 10%, respectively) only. These results have been explained in terms of the presence of two different toxin-hydrolyzing enzyme systems. Studies with B. fibrisolvens showed the presence of a T-2 toxin-degrading enzyme fraction in a bacterial membrane preparation. This fraction had an approximate molecular weight of 65,000 and showed esterase activity (395.6 mumol of p-nitrophenol formed per min per mg of protein with p-nitrophenylacetate as the substrate.  相似文献   

3.
The effect of T-2 toxin on the growth rates of different bacteria was used as a measure of its toxicity. Toxin levels of 10 micrograms/ml did not decrease the growth rate of Selenomonas ruminantium and Anaerovibrio lipolytica, whereas the growth rate of Butyrivibrio fibrisolvens was uninhibited at toxin levels as high as 1 mg/ml. There was, however, a noticeable increase in the growth rate of B. fibrisolvens CE46 and CE51 and S. ruminantium in the presence of low concentrations (10 micrograms/ml) of T-2 toxin, which may indicate the assimilation of the toxin as an energy source by these bacteria. Three tributyrin-hydrolyzing bacterial isolates did not grow at all in the presence of T-2 toxin (10 micrograms/ml). The growth rate of a fourth tributyrin-hydrolyzing bacterial isolate was unaffected. B. fibrisolvens CE51 degraded T-2 toxin to HT-2 toxin (22%), T-2 triol (3%), and neosolaniol (10%), whereas A. lipolytica and S. ruminantium degraded the toxin to HT-2 toxin (22 and 18%, respectively) and T-2 triol (7 and 10%, respectively) only. These results have been explained in terms of the presence of two different toxin-hydrolyzing enzyme systems. Studies with B. fibrisolvens showed the presence of a T-2 toxin-degrading enzyme fraction in a bacterial membrane preparation. This fraction had an approximate molecular weight of 65,000 and showed esterase activity (395.6 mumol of p-nitrophenol formed per min per mg of protein with p-nitrophenylacetate as the substrate.  相似文献   

4.
Cytotoxicity of T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, and T-2 tetraol was compared between normal human fibroblasts and mutant I-cell human fibroblasts, which only produce 10 to 15% of lysosomal hydrolases present in normal fibroblasts. Both cleavage of 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and cell count by hemocytometer were used for evaluations. For all toxins, dose-related effects on both types of cultures were evident. Cytotoxicity of the above mycotoxins on both cell lines were similar, indicating that lysosomal enzymes were not involved in the toxicity of T-2 toxin and its congeners. An inhibitor of lysosomal cysteine proteases (E-64) did not alter the cytotoxicity of T-2 toxin. The decreasing order of toxicity was T-2 toxin, HT-2 toxin, neosolaniol, acetyl T-2 toxin, and T-2 tetraol in both cell lines. When normal human fibroblasts were loaded with the fluorescent dye Lucifer yellow CH (LY), a subsequent treatment of T-2 toxin did not disrupt lysosomal membranes. The uptake of LY was not affected by T-2 toxin, which indicated that T-2 toxin did not interfere with the endocytic pathway. Results indicate that T-2 toxin and its congeners do not exert their primary toxic effect through lysosomal enzymes, membranes, or via the endocytic pathway.  相似文献   

5.
Four experiments using T-2 toxin and nivalenol at different dosage, which represented the 25% and 40% of the LD50 (experiment A: 1.04 mg of T-2 toxin per kilogram of body weight, experiment B: 2.34 mg of T-2 toxin/kg b.w., experiment C: 1.04 mg of T-2 toxin/kg b. w. and 2.34 mg of T-2 toxin/kg b.w.; experiment D: 0.82 mg of nivalenol/kg b.w. and 1.845 mg of nivalenol/kg b.w.) were conducted on 400 mice. Both toxins were administered to mice of different ages (experiments A and B were adults, experiment C and D were young) by intraperitoneal single injection, and the clinical signs, hematological variables and histoanatomo pathological changes were studied. All animals survived. No changes anatomo-histopathological nor significative differences in weight gain were observed. Different behaviors were found for nivalenol and T-2 toxin. The most significant change was the increase in the level of monocytes in old animals, so this could be a biological indicator for T-2 toxin subclinical intoxication.  相似文献   

6.
Uptake of aflatoxin B1 (AFB1) and trichothecene T-2 toxin from growth medium by mycotoxin bioassay strains of Klutyveomyces marxianus and Bacillus megaterium was assessed by incubating, washing, and sonicating the cells, extracting samples with chloroform, and analysing the extracts by a combination of high-performance thin-layer chromatography (HPTLC) and fluorescence densitometry. Using cultures of K. marxianus, the entire AFB1 dose was recovered and no AFB1 metabolites were detected. Less than 1% of the AFB1 was recovered from the cells, and AFB1 did not inhibit growth. Methanol in the incubation medium had no significant effect on the levels of AFB1 associated with K. marxianus cells. The entire dose of T-2 toxin was also recovered from K. marxianus cultures, and no metabolites were detected; again, less than 1% of T-2 toxin was cell-associated, but growth was completely inhibited. AFB1 partially inhibited the growth of B. megaterium; approximately 12% of the dose could not be recovered, and no AFB1-related metabolites were detected. Methanol increased the levels of recoverable AFB1 associated with B. megaterium cells. In the case of T-2 toxin, around 8% of the dose was not recovered, and no metabolites were detected; growth of B. megaterium was stimulated. These results suggest irreversible binding of both toxins, or derivatives of them, to the cells of B. megaterium.  相似文献   

7.
Concentrations of T-2, HT-2, 3'-OH T-2, 3'-OH HT-2, T-2 triol, and T-2 tetraol toxins which inhibited [3H]thymidine uptake in mitogen-stimulated human peripheral lymphocytes by 50% were 1.5, 3.5, 4.0, 50, 150, and 150 ng/ml, respectively. The results suggested that the initial hydrolysis of T-2 toxin and the hydroxylation of T-2 toxin to 3'-OH T-2 toxin did not significantly decrease the immunotoxicity of the parent molecule, whereas further hydrolysis to T-2 triol and T-2 tetraol toxins or hydroxylation to 3'-OH HT-2 toxin decreased in vitro toxicity for human lymphocytes.  相似文献   

8.
Concentrations of T-2, HT-2, 3'-OH T-2, 3'-OH HT-2, T-2 triol, and T-2 tetraol toxins which inhibited [3H]thymidine uptake in mitogen-stimulated human peripheral lymphocytes by 50% were 1.5, 3.5, 4.0, 50, 150, and 150 ng/ml, respectively. The results suggested that the initial hydrolysis of T-2 toxin and the hydroxylation of T-2 toxin to 3'-OH T-2 toxin did not significantly decrease the immunotoxicity of the parent molecule, whereas further hydrolysis to T-2 triol and T-2 tetraol toxins or hydroxylation to 3'-OH HT-2 toxin decreased in vitro toxicity for human lymphocytes.  相似文献   

9.
An antibody against group A trichothecenes was produced after immunization of rabbits with an immunogen prepared by conjugation of T-2 toxin to bovine albumin at the C-8 position. T-2 toxin was first converted to 3-acetylneosolaniol (3-Ac-NEOS) and then to its hemisuccinate (HS) before conjugation to the protein. The rabbits showed a quick immune response after immunization of the new conjugate. The antibody produced bound with tritiated T-2 toxin, T-2 tetraol tetraacetate, and diacetoxyscirpenol (DAS) and showed good cross-reactivities with most of the group A trichothecenes. The concentrations causing 50% inhibition of binding of 3H-T-2 toxin to the new antibody by unlabeled T-2, acetyl-T-2, 3'-OH-T-2, DAS, 3-Ac-NEOS-HS, 3'-OH-Ac-T-2, T-2 tetraol tetraacetate, iso-T-2, 3-Ac-NEOS, Ac-DAS, and 3,4,15-triacetyl-7-deoxynivalenol were found to be 0.34, 0.34, 0.6, 2.5, 4, 10, 18, 24, 100, 200, and 300 ng/assay, respectively; for HT-2, T-2 triol, and T-2 tetraol, the concentration was greater than 1000 ng/assay. Nivalenol, deoxynivalenol (DON), 15-acetyl-DON, and triacetyl-DON, did not inhibit the binding at 1000 ng/assay. The practical application of using this new antibody for radioimmunoassay (RIA) of trichothecene was tested by spiking T-2 toxin to corn. T-2 toxin was then extracted with acetone, subjected to a simple Sep-Pak C-18 reversed-phase treatment, and analyzed by RIA. The overall recovery for 18 samples spiked with 10 to 50 ppb of T-2 toxin was 94.22%.  相似文献   

10.
Ruminococcal cellulase (Ruminococcus albus F-40 endoglucanase EgI) was successfully expressed in Butyrivibrio fibrisolvens OB156C, using the erm promoter from pAMbeta1. A newly identified signal peptide coding region of xynA from B. fibrisolvens 49 allowed efficient translocation of the foreign EgI into the extracellular fraction. First, B. fibrisolvens xynA with or without its own putative signal peptide (XynA SP) coding region was cloned into a shuttle vector to transform B. fibrisolvens OB156C. Both plasmids caused a 2- to 2.4-fold increase in xylanase activity. The transformant expressing XynA with the signal peptide showed a significantly higher proportion of activity in the extracellular fraction than the transformant with XynA lacking the signal peptide (75% vs. 19%), demonstrating the significance of XynA SP in the translocation of the expressed enzyme. Second, using the XynA SP coding region, secretion of EgI was attempted in B. fibrisolvens. Since the signal peptide of R. albus EgI did not function in B. fibrisolvens, it was replaced with the XynA SP. A high activity variant of EgI containing the XynA SP was transcribed using the erm promoter, resulting in a 27-fold increase in endoglucanase activity, most of which (>93%) was in the extracellular fraction of the B. fibrisolvens transformant. EgI without the XynA SP was scarcely detected in the extracellular fraction (<10%).  相似文献   

11.
The present investigations were conducted to test the effects of T-2 toxin on electrophysiological variables of jejunal epithelium of chicken. Jejunal segments of broilers were monitored in Ussing chambers in the presence of T-2 toxin at the levels of 0 (negative control), 0 (methanol/vehicle control), 0.1, 1, 5, and 10 μg/ml of buffer. T-2 toxin did not affect basal values of short circuit current (Isc), transmural potential difference, or tissue conductivity in the jejunal epithelium. T-2 toxin also did not statistically affect glucose-induced electrophysiological variables during the first 3 min of glucose induction. Compared to the vehicle control, the ouabain-sensitive Isc was negatively affected (P?=?0.008) only under 5 μg of T-2 toxin/ml. Increasing levels of T-2 toxin negatively affected the ouabain-sensitive Isc in a cubic (P?=?0.007) fashion. These data indicate that acute exposure to moderate levels of T-2 toxin may progressively impair the cation gradient across the jejunal epithelium.  相似文献   

12.
Administration of dietary T-2 toxin in 120 days old broiler chicks led to significant lower body weights and increase in feed conversion ratio from 2nd week of age. There was significant reduction in haemoglobin and packed cell volume in T-2 toxicated birds at 4 ppm level only. The other hematological parameters like TEC, TLC and absolute leucocyte count did not showed any variation due to T-2 toxin in feed. Significant reduction in serum total protein and cholesterol levels and rise in serum uric acid and LDH levels of broilers were observed due to dietary T-2 toxin. The result suggests that T-2 toxin is toxic to broilers even at very low concentrations.  相似文献   

13.
14.
We tested a novel colorimetric toxicity test, based on inhibition of beta-galactosidase activity in the yeast Kluyveromyces marxianus, for sensitivity to a range of mycotoxins. A variety of trichothecene mycotoxins could be detected. The order of toxicity established with this bioassay was verrucarin A > roridin A > T-2 toxin > diacetoxyscirpenol > HT-2 toxin > acetyl T-2 toxin > neosolaniol > fusarenon X > T-2 triol > scirpentriol > nivalenol > deoxynivalenol > T-2 tetraol. The sensitivity of detection was high, with the most potent trichothecene tested, verrucarin A, having a 50% effective concentration (concentration of toxin causing 50% inhibition) of 2 ng/ml. Other mycotoxins (cyclopiazonic acid, fumonisin B1, ochratoxin A, patulin, sterigmatocystin, tenuazonic acid, and zearalenone) could not be detected at up to 10 micrograms/ml, nor could aflatoxins B1 and M1 be detected at concentrations up to 25 micrograms/ml. This test should be useful for trichothecene detection and for studies of relevant interactions-both between trichothecenes themselves and between trichothecenes and other food constituents.  相似文献   

15.
The ruminal bacterium Butyrivibrio fibrisolvens is being engineered by the introduction of heterologous xylanase genes in an attempt to improve the utilization of plant material in ruminants. However, relatively little is known about the diversity and distribution of the native xylanase genes in strains of B. fibrisolvens. In order to identify the most appropriate hosts for such modifications, the xylanase genotypes of 28 strains from the three 16S ribosomal DNA (rDNA) subgroups of Butyrivibrio fibrisolvens have been investigated. Only 4 of the 20 strains from 16S rDNA group 2 contained homologues of the strain Bu49 xynA gene. However, these four xynA-containing strains, and two other group 2 strains, contained members of a second xylanase gene family clearly related to xynA (subfamily I). Homologues of xynB, a second previously described xylanase gene from B. fibrisolvens, were identified only in three of the seven group 1 strains and not in the group 2 and 3 strains. However, six of the group 1 strains contained one or more members of the two subfamilies of homologues of xynA. The distribution of genes and the nucleotide sequence relationships between the members of the two xynA subfamilies are consistent with the progenitor of all strains of B. fibrisolvens having contained a xynA subfamily I gene. Since many xylanolytic strains of B. fibrisolvens did not contain members of either of the xynA subfamilies or of the xynB family, at least one additional xylanase gene family remains to be identified in B. fibrisolvens.  相似文献   

16.
1. The effect of T-2 toxin on active sodium transport across frog skin both in the presence and in the absence of stimulants of sodium transport, such as Amphotericin B and ADH, was studied using the short circuit current technique with the following results. 2. T-2 toxin produces inhibition of active sodium transport in a dose-response correlation. 3. This effect is irreversible since the washing out of the tissue does not restore its functionality. This indicates that the micotoxin may cross the cellular membrane and act on the internal site. 4. ADH partially removes the inhibitory effect of T-2 toxin. 5. The increase of the sodium pool in the cell as determined by Amphotericin B does not reverse the inhibitory effect of T-2 toxin. 6. The biological significance of these data is discussed in regard to the possible effect of T-2 toxin on Na+, K+-ATPase activity either directly or by a reduction in the metabolic supply of substrates, or by a modified stoichiometry of the pump reaction.  相似文献   

17.
We recently reported that primary fetal bovine Kidney (PFBK) cells were consistently more sensitive to the cytotoxic effects of fusarium T-2 toxin than Madin-Darby bovine kidney (MDBK) cells in culture. The present report examined the influence of T-2 on selected biochemical parameters of these two culture types. T-2 toxin inhibited incorporation of labeled thymidine, uridine, and leucine in both culture types; at lower concentrations of the toxin, PFBK cells were affected to a greater extent than MDBK cells. T-2 toxin inhibited both the transport of thymidine as well as thymidine incorporation into macromolecules in MDBK cells during initial periods, but did not affect uridine incorporation. The cellular enzymes, K+- dependent phosphatase and succinic dehydrogenase were inhibited in MDBK but not in PFBK cultures; acid phosphatase was not influenced in either culture types. In a cell-free system none of the above enzymes were affected by T-2 until the toxin concentration exceeded 10?5M.  相似文献   

18.
Bacterial communities isolated from 17 of 20 samples of soils and waters with widely diverse geographical origins utilized T-2 toxin as a sole source of carbon and energy for growth. These isolates readily detoxified T-2 toxin as assessed by a Rhodotorula rubra bioassay. The major degradation pathway of T-2 toxin in the majority of isolates involved side chain cleavage of acetyl moieties to produce HT-2 toxin and T-2 triol. A minor degradation pathway of T-2 toxin that involved conversion to neosolaniol and thence to 4-deacetyl neosolaniol was also detected. Some bacterial communities had the capacity to further degrade the T-2 triol or 4-deacetyl neosolaniol to T-2 tetraol. Two communities, TS4 and KS10, degraded the trichothecene nucleus within 24 to 48 h. These bacterial communities comprised 9 distinct species each. Community KS10 contained 3 primary transformers which were able to cleave acetate from T-2 toxin but which could not assimilate the side chain products, whereas community TS4 contained 3 primary transformers which were able to grow on the cleavage products, acetate and isovalerate. A third community, AS1, was much simpler in structure and contained only two bacterial species, one of which transformed T-2 toxin to T-2 triol in monoculture. In all cases, the complete communities were more active against T-2 toxin in terms of rates of degradation than any single bacterial component. Cometabolic interactions between species is suggested as a significant factor in T-2 toxin degradation.  相似文献   

19.
Bacterial communities isolated from 17 of 20 samples of soils and waters with widely diverse geographical origins utilized T-2 toxin as a sole source of carbon and energy for growth. These isolates readily detoxified T-2 toxin as assessed by a Rhodotorula rubra bioassay. The major degradation pathway of T-2 toxin in the majority of isolates involved side chain cleavage of acetyl moieties to produce HT-2 toxin and T-2 triol. A minor degradation pathway of T-2 toxin that involved conversion to neosolaniol and thence to 4-deacetyl neosolaniol was also detected. Some bacterial communities had the capacity to further degrade the T-2 triol or 4-deacetyl neosolaniol to T-2 tetraol. Two communities, TS4 and KS10, degraded the trichothecene nucleus within 24 to 48 h. These bacterial communities comprised 9 distinct species each. Community KS10 contained 3 primary transformers which were able to cleave acetate from T-2 toxin but which could not assimilate the side chain products, whereas community TS4 contained 3 primary transformers which were able to grow on the cleavage products, acetate and isovalerate. A third community, AS1, was much simpler in structure and contained only two bacterial species, one of which transformed T-2 toxin to T-2 triol in monoculture. In all cases, the complete communities were more active against T-2 toxin in terms of rates of degradation than any single bacterial component. Cometabolic interactions between species is suggested as a significant factor in T-2 toxin degradation.  相似文献   

20.
A sensitive method for the simultaneous determination of T-2 toxin, HT-2 toxin, neosolaniol, T-2 triol, and T-2 tetraol in layer feed using high-performance liquid chromatography coupled to triple quadrupole mass spectrometry in the positive ionization mode (LC-ESI-MS/MS) is described. Two fast and easy clean-up methods—with BondElut Mycotoxin and MycoSep 227 columns, respectively—were tested. The separation of the toxins was conducted on a Pursuit XRs Ultra 2.8 HPLC column using 0.13 mM ammonium acetate as eluent A and methanol as eluent B. Detection of the mycotoxins was carried out in the multiple reaction monitoring (MRM) mode using ammonium adducts as precursor ions. Quantification of all analytes was performed with d3-T-2 toxin as an internal standard. The clean-up method with MycoSep 227 columns gave slightly better results for layer feed compared to the method using BondElut Mycotoxin columns (MycoSep 227: recovery between 50 and 63 %, BondElut Mycotoxin: recovery between 32 and 67 %) and was therefore chosen as the final method. The limits of detection ranged between 0.9 and 7.5 ng/g depending on the mycotoxin. The method was developed for the analysis of layer feed used at carry-over experiments with T-2 toxin in laying hens. For carry-over experiments, it is necessary that the method includes not only T-2 toxin but also the potential metabolites in animal tissues HT-2 toxin, neosolaniol, T-2 triol, and T-2 tetraol which could naturally occur in cereals used as feed stuff as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号