首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The differentiation of the spermatid, especially in reference to the formation of the flagellum, and transformation of the shape of the nucleus was investigated in the domestic fowl.In the early stage of the spermatid, a prominent Golgi apparatus appears around the centrioles. The Golgi vesicles then surround the axial-filament complex which develops from the distal centriole. These vesicles fuse to form continuous membrane at the earliest stage of flagellar formation, and in the succeeding stage Golgi lamellae are attached to the plasma membrane of the developing flagellum. From these observations, it is assumed that Golgi apparatus may be a source of the membrane system of the flagellum.The microtubules distributed around the nucleus form the circular manchette. The anterior region of the nucleus with the manchette is cylindrical in shape and the posterior region without it remains irregular in shape. When the circular manchette has been completed, the whole nucleus acquires a slender cylindrical shape. The circular manchette then changes into the longitudinal manchette. The nuclei of spermatids without a longitudinal manchette are abnormal in shape. In view of these observations it is assumed that the nuclear shaping of the spermatid may be accomplished by circular manchette and the maintenance of shape of the elongated nucleus by longitudinal manchette.The authors wish to thank Mr. Takayuki Mori for his helpful suggestions and technical advices  相似文献   

2.
中国雨蛙精子形成的研究   总被引:4,自引:0,他引:4  
林丹军  尤永隆 《动物学报》2000,46(4):376-384,T005,T007
中国雨蛙的精子形成过程中,细胞核的浓缩经历了5个时期。从第1期进入第2期,染色质纤维增粗并聚集成卷曲的柱状结构。从第2期进入第3期,染色质纤维进一步增粗,细胞核逐渐伸直成柱状。进入第4期,染色质紧密聚集,纤维之间间隙很小。进入第5期,染色质纤维聚集成均匀的致密结构。伴随着染色质的浓缩,核膜数次更新,核内不参与浓缩的物质渐次从核中排出,核中出现一串核泡。顶体在染色质未浓缩之前(第1期)开始分化,由一  相似文献   

3.
本文研究卵胎生硬骨鱼褐菖(Sebastiscusmarmoratus)精细胞的成熟变化和精子结构。褐菖精细胞发育晚期已具有硬骨鱼类精子的结构雏形:细胞核的背面较平坦,腹面稍外鼓,呈弧面;染色质浓缩成团块状,核的腹侧和后端的染色质较致密;中心粒复合体由近端中心粒和基体组成,近端中心粒和基体排成“L”形;近端中心粒向细胞核的背侧伸出中心粒附属物,中心粒附属物由9条微管组成,9条微管围成一筒状结构,类似轴丝。在晚期精细胞形成精子的过程中,中心粒附属物和近端中心粒相继退缩以至消失不见,同时细胞核后端的形状也随着发生变化。中心粒附属物和近端中心粒的相继消失可以看作是成熟的最后标志。精子的中心粒复合体由基体及其上方的基体帽组成,袖套接于核的后端,其中约有30~40个线粒体;鞭毛从袖套腔中伸出,鞭毛的中心结构是轴丝;轴丝外方为细胞质形成的侧鳍,在鞭毛的近核段,轴丝两侧的侧鳍较宽且不对称。  相似文献   

4.
The kinetic apparatus, the acrosome and associated structures, and the manchette of the spermatid of the domestic chicken have been studied with the electron microscope. The basic structural features of the two centrioles do not change during spermiogenesis, but there is a change in orientation and length. The proximal centriole is situated in a groove at the edge of the nucleus and oriented normal to the long axis of the nucleus and at right angles to the elongate distal centriole. The tail filaments appear to originate from the distal centriole. The plasma membrane is invaginated along the tail filaments. A dense structure which appears at the deep reflection of the plasma membrane is identified as the ring. The fine structure of the ring has no resemblance to that of a centriole and there is no evidence that it is derived from or related to the centrioles. The tail of the spermatid contains nine peripheral pairs and one central pair of tubular filaments. The two members of each pair of peripheral filaments differ in density and in shape: one is dense and circular, and the other is light and semilunar in cross-section. The dense filaments have processes. A manchette consisting of fine tubules appears in the cytoplasm of the older spermatid along the nucleus, neck region, and proximal segment of the tail. The acrosome is spherical in young spermatids and becomes crescentic and, finally, U-shaped as spermiogenesis proceeds. A dense granule is observed in the cytoplasm between acrosome and nucleus. This granule later becomes a dense rod which is interpreted as the perforatorium.  相似文献   

5.
In Nerita picea the proacrosomal granule is formed basally in the early spermatid from one large cisterna of the Golgi body, with which the other Golgi-derived vesicles fuse. After the proacrosomal granule has attached to the plasma membrane and invaginated to form a cup shape, one cisterna of endoplasmic reticulum inserts into the open end and deposits a granular secretion on the inner surface. Subsequently, the proacrosome migrates along the plasma membrane to the apex of the nucleus, but the Golgi body remains basal, as occurs in other archaeogastropods and also many polychaete annelids. However, the final shape and structure of the acrosome is similar to that of mesogastropods. The annulus attaches the distal centriole to the plasma membrane early in spermiogenesis. The production of the flagellum by the distal centriole not only expands the plasma membrane posteriorly but moves the centriolar complex to the nucleus, causing an invagination of the plasma membrane where it is bound by the annulus. During proacrosome migration, the Golgi body secretes a dense tube around the flagellum, and the mitochondria fuse into two spheres at the base of the nucleus. The nuclear plug that closes off the intranuclear canal until this stage rapidly reorganizes itself into two tubes of material inside the canal. The centrioles continue flagellar production, break away from the annulus, and move deep into the intranuclear canal where they fuse together to form the basal body of the sperm. In the maturing spermatid, the two mitochondria fuse into a single sheath that spirals around the flagellum. The annulus does not migrate posteriorly but remains anterior to the midpiece, which is unusual for a filiform sperm. Spermiogenesis in Nerita picea has features in common with both archaeogastropods and mesogastropods but also has some unique features. These observations lend credence to the idea that the Neritidae are a transitional group between Archaeogastropoda and Mesogastropoda.  相似文献   

6.
Summary The first indication of differentiation of the Jensen's ring has been detected in an early stage of spermiogenesis of Felis catus Linné when the pair of centrioles takes up a position immediately beneath the plasma membrane. The chromatoid bodies appear in the early spermatid cytoplasm through the nuclear pore complex. In a more advanced stage, such bodies have been found in association with the striated columns, the distal centriole or the proximal part of flagellum and the Jensen's ring. As the spermiogenesis proceeds, the bodies have decreased their size and density, and finally disappear in mature spermatozoa. The chromatoid bodies seem, therefore, to share with the centriole the capacity to form the connecting piece. As a consequence of disorganization of triplet microtubules of the centriole, a noticeable material appears in the center of lumen of the centriole to be identifiable as a distinct precursor of the central pair of axonemal complex. Microtubules are first developed as the sheath of principal piece of the sperm flagellum, originating from the plasma membrane surrounding the axonemal complex.  相似文献   

7.
昆虫精细胞内中心粒附体的来源和作用   总被引:1,自引:0,他引:1  
王宗舜  钟香臣 《昆虫学报》1993,36(4):419-422
本研究应用界面铺浮和超薄切片技术,观察了东亚飞蝗(Locusta migratoria manilensis)和七星瓢虫(Coccinella siptempunctata L.)精细胞内中心粒附体(CA)的形成和作用。结果发现,作为电子致密体的CA前体和原顶体颗粒出现在副核和细胞核之间区域。随后,这个主要是由约300 A颗粒组成的CA前体附着在核膜,核内、外膜加厚。在副核分化成两个线粒体衍生物或稍早些时刻,近心中心粒移向CA并嵌入。中心粒镶嵌到校膜上发育成基体,由此生长出轴丝来。随着精细胞的延长, CA的形状也跟着转变和伸长。 250-300A染色质纤维沿精细胞长纵轴连接在CA结构的基部。 当精细胞核向长形转变时,染色质纤维解旋并结合在一起形成缎带结构。因此,可以设想cA是作为暂时性细胞器在组织精细胞内,染色质纤维重新组织排列和指导中心粒移向精细胞核的特定区域中起作用。  相似文献   

8.
The spermatozoon of Chiton marginatus is a long uniflagellate cell displaying structural features of “modified sperm.” The nucleus presents a conical shape with a long apical cylindrical extension. The chromatin is homogeneously dense. Scattered inside the condensed nucleus, a few nuclear lacunae are visible. The acrosomal complex is lacking. Some mitochondria are located in a laterofrontal structure side by side with the nucleus. The typical midpiece is absent. The cytoplasm forms a thin layer around the nucleus and the mitochondria. The proximal centriole is in a basal nuclear indent. The distal centriole serves to form the axoneme tail with the usual microtubular pattern. During nuclear maturation, the early spermatid nucleus is spherical and contains fine granular chromatin patches. The nuclear envelope shows a deposit of dense material at the base of the nucleus, forming a semicircular invagination occupied by a flocculent mass. In middle spermatid stage, the chromatin gets organized in filaments, coiled as a hank, attached over the inner surface of the basal thickening of the nuclear envelope. The nucleus starts to elongate anteroposteriorly. At the pointed apical portion of the spermatid, a group of microtubules is observed seeming to impose external pressure to the nucleus giving rise to the long apical nuclear point. The mitochondria have a basal position. Late spermatids have an elongated conical nucleus. The chromatin filaments are further condensed, and lacunae appear inside the nucleus. Some mitochondria migrate to a lateral position.  相似文献   

9.
Summary The present study examines spermiogenesis, and in particular the formation of the acrosome, in ten species of chitons belonging to four families. This study emphasizes the formation of the acrosome but brings to light several other structures that have received little or no mention in previous studies. The process of spermiogenesis is essentially similar in each species, although Chaetopleura exhibits some significant differences. In early spermiogenesis the Golgi body secretes numerous small pro-acrosomal vesicles that gradually migrate into the apical cytoplasm. The chromatin condenses from granules into fibres which become twisted within the nucleus. A small bundle of chromatin fibres projects from the main nuclear mass into the anterior filament; this coincides with the appearance of a developing manchette of microtubules around the nucleus that originates from the two centrioles. Radiating from the distal centriole is the centriolar satellite complex, which is attached to the plasma membrane by the annulus. The distal centriole produces the flagellum posteriorly and it exits eccentrically through a ring of folded membrane that houses the annulus. Extending from the annulus on one side of the flagellum, in all but one species, is a dense fibrous body that has not been previously reported. The proximal centriole lies perpendicular to the end of the distal centriole and is attached to it by fibro-granular material. Pro-acrosomal vesicles migrate anteriorly through the cytoplasm and move into the anterior filament to one side of the expanding nucleus. Eventually these vesicles migrate all the way to the tip of the sperm, where they fuse to form one of two granules in the acrosome. In mature sperm the nucleus is bullet-shaped with a long anterior filament and contains dense chromatin with occasional lacunae. The mitochondria vary in both number and position in the mature sperm of different species. Both centrioles are housed eccentrically in a posterior indentation of the nucleus, where the membranes are modified. The elongate flagellum tapers to a long filamentous end-piece that roughly corresponds to the anterior filament and may be important in sperm locomotion for hydrodynamic reasons. An acrosome is present in all ten species and stained positively for acid phosphatase in three species that were tested.  相似文献   

10.
尼罗罗非鱼精子形成中核内囊泡的释放   总被引:16,自引:3,他引:13  
尤永隆  林丹军 《动物学报》1998,44(3):257-263
通过透射电镜观察了尼罗罗非鱼的精子形成过程。尼罗罗非鱼精子细胞在成熟过程中,细胞核中出现由双层生物膜构成的囊泡。囊泡中均匀分布着电子密度低的物质。该囊泡逐渐从细胞核内排到细胞核外。在此过程中细胞核不但排出不参与染色质浓缩的物质,还将多余的核膜排出。进入袖套的囊泡可以留在精子的袖套中,而排到核前方和核侧面的囊泡继续以出芽的方式排出精子细胞。尼罗罗非鱼成熟精子的头部仅有染色质高度浓缩的细胞核。细胞核前  相似文献   

11.
In the course of the reorganization and degeneration of the proximal centriole in the mature acentriolate spermatozoon of the Mongolian gerbil, both the proximal and distal centrioles appear in the early cap phase of spermatid development. During the acrosome phase, both distal and proximal centrioles become highly active in the formation of a segmented column. The proximal centriole becomes actively involved in the formation of the capitulum, while the distal centriole forms the axonemal complex and dense fibers. During the maturation phase of spermatid development, the “pinwheel” arrangement of the proximal centriole becomes an “S”-shaped structure, turned 90° on its vertical axis. The few “doublet” microtubules that can be detected later in that stage completely disappear during spermiation. The distal centriolar area develops a single central pair of microtubules and membranous elements. Another prominent feature in the neck region of the gerbil spermatozoa is the presence of two dense rudimentary columns in association with the mitochondria. Although their density is similar to that of the other columns, these two columns have no connection with the dense fibers; in fact, they are closely associated with the mitochondria.  相似文献   

12.
Spermiogenesis, known as spermateleosis in lower vertebrates, is the transformation of the round spermatid into a highly specialized spermatozoon with a species-specific structure. Spermateleosis and sperm morphology of two species of caecilians, Ichthyophis tricolor and Uraeotyphlus cf. narayani, from the Western Ghats of Kerala, India, were studied using light and transmission electron microscopy. Spermateleosis is described in early, mid-, and late phases. During the early phase, the spermatid nucleus does not elongate, but the acrosome vesicle is Golgi-derived and its material is produced as a homogeneous substance rather than as discrete granules. In development of the acrosome, the centrioles shift in position to the lower half of the cell. The acrosomal vesicles take the full shape of the acrosome with the establishment of the perforatorium in midphase. An endonuclear canal develops and accommodates the perforatorium. The incipient flagellum is laid down when the proximal centriole attaches to the posterior side of the nucleus and the distal centriole connects to the proximal centriole, which forms the basal granule of the acrosome. The axial fiber also appears during midphase. The mitochondria shift in position to the posterior pole of the cell to commence establishment of the midphase. Late phase is characterized by nuclear condensation and elongation. Consequently, the final organization of the sperm is established with the head containing the nucleus and the acrosome. The undulating membrane separates the axoneme and axial fiber. Most of the cytoplasm is lost as residual bodies.  相似文献   

13.
The formation of the flagellum in the spermatid of the Japanese land snail, Euhadra hickonis, is introduced by the appearance of a central indentation in the differentiated posterior side of the spherical nucleus early in spermiogenesis. One centriole moves to this part of the cell, changes in several structural respects and acquires a short-lived “centriole adjunct”. At first it lies tangential to the nuclear surface as it begins to induce formation of the flagellar axoneme; then it turns so that its proximal end fits into the deepening nuclear indentation (“implantation fossa”). Cytoplasmic tubules appear to mediate this shift in direction. Internal changes in the centriolar components begin as it initiates formation of the axoneme, and continue throughout spermiogenesis. First, a dense “cap” forms at its proximal end, the microtubular triplets become doublets and a pair of singlets occupies the center of the complex. All these microtubules extend from the dense cap and are continuous with those of the axoneme. As the basal body (modified centriole) becomes set in the implantation fossa, the material of the centriole adjunct forms 9 strands, which are continuous with the peripheral coarse fibers when these develop. The microtubular doublets of the basal body are visible for a short time between the fiber strands; in the mature spermatozoon they are found embedded in the basal body portions of the coarse fibers in a degenerated form. Posterior to the basal body, however, they separate from the inner sides of the striated coarse fibers and become the doublets of the axoneme. The proximal part of the elongating axoneme lies in a posterior extension of the cell, in which glycogen particles and mitochondria are conspicuous. As the mitochondria unite into a sheath tightly surrounding the axoneme, the structure of their cristae changes to form a paracrystal-line “mitochondria derivative”, which consists of many layers close to the nucleus and progressively fewer posteriorly. Outside of this “primary sheath”, more modified mitochondria unite to form a “secondary sheath” of paracrystalline lamellae which encloses a compartment, filled with glycogen particles, that extends in a low-pitched helix nearly to the end of the flagellum. In the late spermatid, microtubules become arranged at regular intervals around the nucleus and secondary sheath of the flagellum for a short period while the remaining cytoplasm and spermatid organelles such as the Golgi complex are being discarded. The flagellum of the mature spermatozoon is 250–300 μm in length, tapering gradually from a diameter of ca 1 μm just behind the nucleus to less than 0.3 μm at its tip, as the result of reduction in the amount of stored glycogen, the number of paracrystalline lamellae and the diameter of the peripheral fibers.  相似文献   

14.
Summary The fine structure of the spermatogonium, spermatocyte and spermatid of a marine snail, Littorina sitkana is described. The ring centriole (annulus) is formed from the distal centriole and it migrates to the base of the mitochondrial region where it lies in a joint-like structure which is formed by an area of invaginated plasma membrane. The distal and proximal centrioles are at first perpendicular to each other but the proximal centriole rotates to a position coaxial with the distal centriole and fuses with it. The peripheral doublet fibers are continuous between the two centrioles but the central fibers originate only in the distal centriole. The acrosome differentiates from the proacrosomal granule which is derived from a Golgi body. Microtubules, present at this stage, may assist acrosomal formation. Chromatin condensation begins with the formation of fibrous strands, then to lamellar plates which become folded and later twisted around the flagellar shaft. In the final stages the lamellae appear in cross section as concentric rings which eventually fuse to form a homogeneously dense nuclear tube.  相似文献   

15.
Scanning and transmission electron microscopy were used to investigate the fine structure of the sperm of the sparid fish Sparus aurata L. The mature spermatozoon of gilthead sea bream belongs, like that of the other sparid fish, to a "type I" as defined by Mattei (1970). It has a spherical head which lacks an acrosome, a short, irregularly-shaped midpiece and a long cylindrical tail. The nucleus reveals a deep invagination (nuclear fossa) in which the centriolar complex is located. The two centrioles are approximately perpendicular to each other and show a conventional "9+0" pattern. The proximal centriole is associated with a cross-striated cylindrical body lying inside a peculiar satellite nuclear notch which appears as a narrow invagination of the nuclear fossa. The distal centriole is attached to the nuclear envelope by means of a lateral plate and radial fibres made of an electron-dense material. The short midpiece houses one mitochondrion. The flagellum is inserted perpendicularly into the base of the nucleus and contains the conventional 9+2 axoneme.  相似文献   

16.
The general organization of the male genital system, the spermatogenesis and the sperm structure of the proturan Acerella muscorum have been described. At the apex of testis apical huge cells are present; their cytoplasm contains a conventional centriole, a large amount of dense material and several less electron-dense masses surrounded by mitochondria. Spermatocytes have normal centrioles and are interconnected by cytoplasmic bridges. Such bridges seem to be absent between spermatid cells and justify the lack of synchronization of cell maturation. Spermatids are almost globular cells with a spheroidal nucleus and a large mass of dense material corresponding to the centriole adjunct. Within this mass a centriole is preserved. Mitochondria of normal structure are located between the nucleus and the plasma membrane. The spermatids are surrounded by a thick membrane. No flagellar structure is formed. Sperm have a compact spheroidal nucleus, a large cap of centriole adjunct material within which a centriole is still visible. A layer of mitochondria is located over the nucleus. The cytoplasm is reduced in comparison to spermatids; many dense bodies are interspersed with sperm in the testicular lumen. The sperm are small, immotile cells of about 2.5-3 μm in diameter.  相似文献   

17.
The behavior of centrioles during eupyrene and apyrene meiosis was examined in the silkworm, Bombyx mori , by transmission electron microscopy and indirect immunofluorescence for tubulin. In eupyrene spermatocytes the centrioles, accompanied by axonemes, attached temporarily to the nucleus at diplotene, then detached from the nucleus in diakinesis. After the separation, a beret-shaped structure consisting of a double membrane covered the proximal region of the pair of centrioles. The structure disappeared after breakdown of the nuclear membrane. The centriole, with the axoneme, reattached to the nucleus at telophase I. The process was repeated during meiosis II until the centrioles maintained their nuclear attachment in newly developed spermatids. In stark contrast to their eupyrene counterparts, apyrene spermatocytes were conspicuously devoid of any attachment of the centrioles to the nucleus. These eupyrene-specific and apyrene-specific relationships were consistently and repeatedly found between the nuclear membrane and centrioles, giving rise to suspicion that the behavioral phenomena may be related to differentiation of the dimorphic sperm types.  相似文献   

18.
The spermatozoon of Lytechinus variegatus has two parallel centrioles. The basal body of the flagellum consists of the proximal centriole (a short cylinder of nine tubule-triplets) and its distal extension of nine tubule-doublets. The distal centriole lies near the distal end of the basal body, between the nucleus and the mitochondrion. The observations suggest that both the proximal and the distal centrioles are polarized structures, their tubule-triplets pitched in the same direction and their distal ends associated with the flagellar axoneme and with the mitochondrion, respectively. The distal centriole in different spermatozoa occupies different positions around the basal body-flagellum complex.  相似文献   

19.
通过透射和扫描电镜观察了白肛海地瓜(Acaudina leucoprocta)的精子发生过程及其形态结构,揭示了白肛海地瓜精子发生时期一系列变化,其精子发生分为精原细胞、初级精母细胞、次级精母细胞、精细胞、成熟精子5个时期。精原细胞体积最大。精母细胞染色质开始凝集。精细胞前顶体颗粒形成。白肛海地瓜成熟精子的超微结构为原生型,由头部、中部、尾部组成,头部圆形,最前端为顶体,核染色质凝集成团块状,中部是线粒体和中心粒复合体融合成1个超大结构,尾部长约60μm,尾部鞭毛横切面为典型的"9+2"型结构。  相似文献   

20.
The fate of the proximal centriole in passeridan birds is an area of controversy and relative lack of knowledge in avian spermatogenesis and spermatology. This study examines, for the first time, spatiotemporal changes in the centriolar complex in various phases of spermiogenesis in a passerine bird, the Masked weaver (Ploceus velatus). It also describes the configuration of the centriolar complex and the relationship between it and the granular body in both intra- and extra-testicular spermatozoa. It is shown that the proximal centriole is retained and attaches, at its free end, to the granular body of spermatids in every step of spermiogenesis, as well as in mature intra-testicular and post-testicular spermatozoa, including those in the lumen of the seminal glomus. As the centriolar complex, along with its attached granular body, approaches the nucleus in the early spermatid, the proximal centriole articulates with the distal centriole at an acute angle of about 45°, and thereafter, both centrioles, still maintaining this conformation, implant, by means of their articulating proximal ends, at the implantation fossa of the nucleus. In the mature spermatid and spermatozoon, the granular body winds itself helically around the centriolar complex in the neck/midpiece region of the cell, and, thus, becomes the granular helix. The significance of this observation must await future studies, including possible phylogenetic re-evaluation and classification of birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号