首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a rule, non‐indigenous species (NIS) populations derived from biological invasion events represent a subset of the genetic diversity of the source population. In biological invasions, host–parasite interactions play an important role, and parasitological data for NIS populations can provide useful information such as their area of origin, mechanism of invasion and prospects of success in the new habitat. When both genetic and parasitological data are available, and they suggest the same scenario, the history of an invasion can be inferred with no discrepancy, but when data cannot be reconciled an alternative model should be considered. In this study a comparison of genetic and parasitological data for the Lessepsian migrant the bluespotted cornetfish, Fistularia commersonii, in the Mediterranean Sea presents the opportunity to evaluate the compatibility of information of this nature, and to propose possible invasion scenarios consistent with evidence provided by both criteria.  相似文献   

2.
Biological invasions are increasingly creating ecological and economical problems both on land and in aquatic environments. For over a century, the Mediterranean Sea has steadily been invaded by Indian Ocean/Red Sea species (called Lessepsian invaders) via the Suez Canal, with a current estimate of ~450 species. The bluespotted cornetfish, Fistularia commersonii, considered a ‘Lessepsian sprinter’, entered the Mediterranean in 2000 and by 2007 had spread through the entire basin from Israel to Spain. The situation is unique and interesting both because of its unprecedented rapidity and by the fact that it took this species c. 130 years to immigrate into the Mediterranean. Using genome scans, with restriction site‐associated DNA (RAD) sequencing, we evaluated neutral and selected genomic regions for Mediterranean vs. Red Sea cornetfish individuals. We found that few fixed neutral changes were detectable among populations. However, almost half of the genes associated with the 47 outlier loci (potentially under selection) were related to disease resistance and osmoregulation. Due to the short time elapsed from the beginning of the invasion to our sampling, we interpret these changes as signatures of rapid adaptation that may be explained by several mechanisms including preadaptation and strong local selection. Such genomic regions are therefore good candidates to further study their role in invasion success.  相似文献   

3.
Lessepsian migrant Fistularia commersonii from the Rhodes marine area   总被引:1,自引:0,他引:1  
The bluespotted cornetfish Fistularia commersonii which originates from the Red Sea, appeared in the marine area of Rhodes Island (south-east Aegean Sea). This is a new record of the species based on 37 specimens caught during summer-winter 2001. The species appears to be spreading rapidly west and easily becoming established in Mediterranean coastal habitats.  相似文献   

4.
Adaptability is an important factor in defining success or failure of an introduced species. The bluespotted cornetfish, Fistularia commersonii , invaded the Mediterranean from the Red Sea and spread quickly, displaying an explosive growth pattern in the eastern and central Mediterranean. Stomach contents of the Lessepsian piscivore were studied from off the Lebanese coast in order to describe aspects of its feeding ecology in the new environment. Cornetfish of different sizes (25–112 cm Lt) and from various habitats and depths (1–40 m) were sampled over an 18-month period (May 2003 to November 2004). Only 29% of the individuals contained identifiable prey items. The diet of the invasive cornetfish comprised a large variety of prey (41 taxa), Spicara smaris and Boops boops being the most important. Comparisons among prey habitats showed that the invasive cornetfish fed preferably on schooling species living in the water column. A large diversity of prey species characterized autumn and winter seasons while S. smaris and B. boops dominated in the spring and summer. Diet did not vary significantly with predator size except for S. smaris , which was a more important prey to middle size-classes cornetfish. The invasion of F. commersonii might have an important effect on structure and population dynamics of native communities, however it seems premature to predict the potential impact on eastern Mediterranean ecosystems or fisheries.  相似文献   

5.
The bluespotted cornetfish (Fistularia commersonii) (Osteichtyes, Fistulariidae) is considered to be one of the most invasive species of the Mediterranean Sea and Europe but only scattered information exists on its distribution and abundance. Here we collated the available species records, following its first detection in the Mediterranean Sea, in January 2000, until October 2011. A total of 191 observations were used to reconstruct the invasion sequence, to provide estimates of the rate of spread and to construct an environmental suitability model based on six biophysical variables and the maximum entropy approach. The results showed that colonization of the Mediterranean Sea proceeded in parallel along the southern and northern rim of the Basin at speeds that reached 1,000–1,500 km year?1 with a clear decrease in the rate of spread at the Sicily Strait. The most important explanatory variables for describing the distribution of F. commersonii were mean depth (explaining 32.4 % of the data variance), chlorophyll-a (29.3 %), and salinity (18.4 %). Coastal areas with relatively low chlorophyll-a concentrations and high salinity were the preferred habitat of the bluespotted cornetfish in its invaded range. Conversely, extreme productivity (highly eutrophic or highly oligotrophic), low salinity and cold temperatures provided abiotic resistance to this invasion. Areas of high environmental suitability were identified along the northern coasts of the Levantine Sea, Dodecanese, Sicily Strait and Tyrrhenian Sea. In contrast, the north Aegean Sea, the Adriatic and the Alboran Sea, the Nile Delta, the western coasts of Egypt and Cyrenaica were unfavourable for the invasion. Despite some limits due to the model’s resolution scale, these general predictions provide new insights into the F. commersonii invasion, indicating abiotic factors of primary importance in shaping the distribution of this species in its invaded range.  相似文献   

6.
One adult female bluespotted cornetfish Fistularia commersonii was captured near the coast of Arbatax (Sardinia, Italy) in late October 2005. Macroscopic and microscopic analysis of the gonad revealed a postspawning ovary. Several body parts of the damselfish Chromis chromis were found in its stomach contents. Different developmental stages of 58 metazoan parasites belonging to Arthropoda, Nematoda and Platyhelminthes were detected in its mouth and digestive tract. The lepocreadiid Allolepidapedon fistulariae was reported for the first time from the Mediterranean and, with the exception of this species, all the parasites found were reported for the first time in this host. This new record of F. commersonii may confirm the rapid range expansion of this Lessepsian migrant in the western Mediterranean Sea, as well as the presence of its endoparasite A. fistulariae .  相似文献   

7.
Information on the initial stages of dispersal and settlement are of great interest in understanding the dynamics of biological invasions and in designing management responses. A newly settled population of the Lessepsian rabbitfish migrant Siganus luridus, that arrived in Linosa Island (Sicily Strait) in 2000, offered a unique opportunity to examine the genetic variability of the early phase of invasion and the starting point to test genetic variation within and between colonist and source populations.Demographics and dynamic aspects of S. luridus in the Mediterranean were evaluated by using phylogeographic and demographic (coalescent) methods based on DNA sequences of the mitochondrial control region. Sequences from 95 S. luridus, 25 Siganus rivulatus, and one of Siganus (Lo) vulpinus and S. doliatus were used. Samples were collected in one locality in the Red Sea (Eilat) and three localities in the Mediterranean (Israel, Greece and Linosa, Italy). Data showed (for the first time in a Lessepsian migrant) a lowering of the genetic diversity of the invading population (Mediterranean) (haplotype diversity 0.879, nucleotide diversity 0.592) compared to the parental one (Red Sea) (haplotype diversity 0.978, nucleotide diversity 0.958).Within the Mediterranean populations, there was no pattern of regional separation and mitochondrial diversity appeared to be preserved during the Linosa colonization, with no traces of founder events. Such evidence agrees with the idea that Lessepsian migration involves many individuals from its earliest stages.  相似文献   

8.
遗传多样性与外来物种的成功入侵: 现状和展望   总被引:3,自引:0,他引:3  
遗传多样性被认为是影响外来种入侵成功的重要因素之一。研究表明, 尽管外来种在入侵过程中可能受到奠基者效应的影响, 但是多次引种、种内或种间杂交等过程使得许多外来种在引入地的遗传多样性水平未必会显著低于原产地, 从而使得外来种可能通过快速进化来适应引入地的新生境。然而, 高水平的遗传多样性并非成功入侵的必要条件, 遗传变异的匮乏对一些外来种的入侵能力没有明显的影响, 甚至在一些生物入侵案例中, 遗传多样性的降低反而促进了入侵成功。针对遗传多样性与入侵成功之间的复杂关系, 本文在评述外来种遗传多样性的研究现状的基础上, 分析了遗传多样性对外来种的短期入侵成功和长期进化的影响机制, 从方法角度探讨了目前研究中存在的若干问题, 并对如何推进入侵生态学研究提出了一些看法。正如一些学者提出的, 入侵生态学需要与生态学其他分支整合起来, 才能加深对生物入侵及其相关的生态和进化过程的理解。  相似文献   

9.
The present note reports the first study of the Lessepsian migrant, bluespotted cornetfish Fistularia commersonii Rüppell, 1838 from the Gulf of Tunis based on 32 individuals. The male:female ratio was skewed towards females. The length-weight relationship exhibited an isometric growth. Morphometric and meristic characters, information on feeding habits and gonads were also provided. The eventual establishment of F. commersonii within the Mediterranean is then discussed according the available data on reproduction and growth.  相似文献   

10.
First record of the bluespotted cornetfish from the Mediterranean Sea   总被引:3,自引:0,他引:3  
Three specimens of the Indo-Pacific Bluespotted cornetfish Fistularia commersonii are recorded for the first time from the Mediterranean. The presence of this species in the Mediterranean is due to migration from the Red Sea via the Suez Canal.  相似文献   

11.
Biological invasions can lead to extinction events in resident communities and compromise ecosystem functioning. We tested the effect of two widespread biodiversity measurements, genotypic richness and genotypic dissimilarity on community invasibility. We manipulated the genetic structure of bacterial communities (Pseudomonas fluorescens) and submitted them to invasion by Serratia liquefaciens. We show that the two diversity measures impact on invasibility via distinct and additive mechanisms. Genotypic dissimilarity of the resident communities linearly increased productivity and in parallel decreased invasion success, indicating that high dissimilarity prevents invasion through niche pre-emption. By contrast, genotypic richness exerted a hump-shaped effect on invasion and was linked to the production of toxins antagonistic to the invader. This effect peaked at intermediate richness, suggesting that high richness levels may increase invasibility. Invasibility could be well predicted by the combination of these two mechanisms, documenting that both genotypic richness and dissimilarity need to be considered, if we are to understand the biotic properties determining the susceptibility of ecosystems to biological invasions.  相似文献   

12.
Incorporation of the fossil record and molecular markers into studies of biological invasions provides new historical perspectives on the incidence of natural and human-mediated invasions of nonindigenous species (NIS). Palaeontological, phylogeographic, and molecular evidence suggests that the natural, multiple colonizations of the Caspian basin via transient connections with the Black Sea and other basins played an important role in shaping the diversity of Caspian fauna. Geographically isolated, conspecific Ponto-Caspian lineages that currently inhabit fragmented habitats in the Ponto-Caspian region show limited genetic divergence, implying geologically recent episodes of gene flow between populations during the Pliocene to Pleistocene. Several molluscan lineages in the Caspian Sea may have descended from Lake Pannon stock before the Late Miocene isolation of the Caspian depression, about 5.8 million years ago. Anthropogenic activities during the 20th century were responsible for a 1800-fold increase in the rate of establishment of new aquatic species in the Caspian Sea compared to the preceding two million years of natural colonization. The observed success of NIS invasions during the 20th century was due primarily to human-mediated transport mechanisms, which were dominated by shipping activities (44%). Human-mediated species transfer has been strongly asymmetrical, toward the Volga Delta and Caspian Sea from or through Black and Azov Seas. Global and regional trade, particularly that mediated by commercial ships, provides dispersal opportunities for nonindigenous invertebrates, indicating that future invasions in the Caspian Sea are anticipated.  相似文献   

13.
14.
Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations.  相似文献   

15.
While many introduced invasive species can increase genetic diversity through multiple introductions and/or hybridization to colonize successfully in new environments, others with low genetic diversity have to persist by alternative mechanisms such as epigenetic variation. Given that Phragmites australis is a cosmopolitan reed growing in a wide range of habitats and its invasion history, especially in North America, has been relatively well studied, it provides an ideal system for studying the role and relationship of genetic and epigenetic variation in biological invasions. We used amplified fragment length polymorphism (AFLP) and methylation‐sensitive (MS) AFLP methods to evaluate genetic and epigenetic diversity and structure in groups of the common reed across its range in the world. Evidence from analysis of molecular variance (AMOVA) based on AFLP and MS‐AFLP data supported the previous conclusion that the invasive introduced populations of P. australis in North America were from European and Mediterranean regions. In the Gulf Coast region, the introduced group harbored a high level of genetic variation relative to originating group from its native location, and it showed epigenetic diversity equal to that of the native group, if not higher, while the introduced group held lower genetic diversity than the native. In the Great Lakes region, the native group displayed very low genetic and epigenetic variation, and the introduced one showed slightly lower genetic and epigenetic diversity than the original one. Unexpectedly, AMOVA and principal component analysis did not demonstrate any epigenetic convergence between native and introduced groups before genetic convergence. Our results suggested that intertwined changes in genetic and epigenetic variation were involved in the invasion success in North America. Although our study did not provide strong evidence proving the importance of epigenetic variation prior to genetic, it implied the similar role of stable epigenetic diversity to genetic diversity in the adaptation of P. australis to local environment.  相似文献   

16.
Biological invasions generally start from low initial population sizes, leading to reduced genetic variation in nuclear and especially mitochondrial DNA. Consequently, genetic approaches for the study of invasion history and population structure are difficult. An extreme example is the Mediterranean fruit fly, Ceratitis capitata (Medfly), for which successive invasions during this century have resulted in a loss of 60% of ancestral genetic variation in isozymes and 75% of variation in mitochondrial DNA. Using Medflies as an example, we present a new approach to invasion genetics that measures DNA sequence variation within introns from multiple nuclear loci. These loci are so variable that even relatively recently founded Medfly populations within California and Hawaii retain ample genetic diversity. Invading populations have only lost 35% of the ancestral genetic variation. Intron variation will allow high-resolution genetic characterization of invading populations in both natural and managed systems, although non-equilibrium methods of analysis may be necessary if the genetic diversity represents sorting ancestral polymorphism.  相似文献   

17.
The shell colour of many pulmonate land snail species is highly diverse. Besides a genetic basis, environmentally triggered epigenetic mechanisms including stress proteins as evolutionary capacitors are thought to influence such phenotypic diversity. In this study, we investigated the relationship of stress protein (Hsp70) levels with temperature stress tolerance, population structure and phenotypic diversity within and among different populations of a xerophilic Mediterranean snail species (Xeropicta derbentina). Hsp70 levels varied considerably among populations, and were significantly associated with shell colour diversity: individuals in populations exhibiting low diversity expressed higher Hsp70 levels both constitutively and under heat stress than those of phenotypically diverse populations. In contrast, population structure (cytochrome c oxidase subunit I gene) did not correlate with phenotypic diversity. However, genetic parameters (both within and among population differences) were able to explain variation in Hsp70 induction at elevated but non-pathologic temperatures. Our observation that (1) population structure had a high explanatory potential for Hsp70 induction and that (2) Hsp70 levels, in turn, correlated with phenotypic diversity while (3) population structure and phenotypic diversity failed to correlate provides empirical evidence for Hsp70 to act as a mediator between genotypic variation and phenotype and thus for chaperone-driven evolutionary capacitance in natural populations.  相似文献   

18.
Rapana venosa is a predatory marine gastropod native to the coastal waters of China, Korea, and Japan. Since the 1940s, R. venosa has been transported around the globe and introduced populations now exist in the Black Sea, the Mediterranean Sea, the Adriatic and Aegean seas, off the coasts of France and the Netherlands, in Chesapeake Bay, Virginia, USA, and in the Rio de la Plata between Uruguay and Argentina. This study surveyed variation in two mitochondrial gene regions to investigate the invasion pathways of R. venosa, identify likely sources for introduced populations, and evaluate current hypotheses of potential transportation vectors. Sequence data were obtained for the mitochondrial cytochrome c oxidase I and NADH dehydrogenase subunit 2 gene regions of 178 individuals from eight native locations and 106 individuals from 12 introduced locations. Collections from within the native range displayed very high levels of genetic variation while collections from all introduced populations showed a complete lack of genetic diversity; a single haplotype was common to all introduced individuals. This finding is consistent with the hypothesis that R. venosa was initially introduced into the Black Sea, and this Black Sea population then served as a source for the other secondary invasions by various introduction vectors including ballast water transport. Although non‐native R. venosa populations currently appear to be thriving in their new environments, the lack of genetic variability raises questions regarding the evolutionary persistence of these populations.  相似文献   

19.
Invasive events by Bemisia tabaci (Gennadius) biotypes in various parts of the world are of continuing interest. The most famous is biotype B that has caused great economic losses globally. In addition, biotype Q has also recently been reported to be a new invasive pest. These two biotypes have been monitored for some time in the Western North Pacific region, but the invasive events and population genetic structures of these two biotypes are still not clear in this region. In this study, the mitochondrial cytochrome oxidase I (COI) gene was used to reconstruct a phylogenetic tree for identifying biotypes B and Q and to study the relationships between invasive events and ornamental plants. Population genetic analyses of mtCOI sequences were also used to study the genetic relationships within and between populations. A combination of a phylogenetic tree and haplotype analysis suggested the recent invasion of biotype Q in this region is related to the international ornamental trade from the Mediterranean region. Low levels of haplotype diversity and nucleotide diversity indicate that the presence of biotypes B and Q in the Western North Pacific region are caused by multiple invasions. Hierarchical analysis of molecular variance supports the hypothesis of multiple invasions. In addition, high sequence identities and low genetic distances within and between populations of the two biotypes revealed that these invasive events occurred recently. The low levels of genetic differentiation revealed by pairwise F (ST) values between populations also suggests the invasions were recent. Therefore, results of this study suggested that biotypes B and Q entered this region through multiple recent invasions. A quarantine of agricultural crops may be necessary to prevent further invasions.  相似文献   

20.
Plant biosecurity is increasingly challenged by emerging crop pests. The spider mite Tetranychus evansi has recently emerged as a new threat to solanaceous crops in Africa and the Mediterranean basin, with invasions characterized by a high reproductive output and an ability to withstand a wide range of temperatures. Mitochondrial (868 bp of COI) and nuclear (1,137 bp of ITS) loci were analyzed in T. evansi samples spanning the current geographical distribution to study the earliest stages of the invasive process. The two sets of markers separate the samples into two main clades that are only present together in South America and Southern Europe. The highest COI diversity was found in South America, consistent with the hypothesis of a South American origin of T. evansi. Among the invaded areas, the Mediterranean region displayed a high level of genetic diversity similar to that present in South America, that is likely the result of multiple colonization events. The invasions of Africa and Asia by T. evansi are characterized by a low genetic variation associated with distinct introductions. Genetic data demonstrate two different patterns of invasions: (1) populations in the Mediterranean basin that are a result of multiple cryptic introductions and (2) emerging invasions of Africa and Asia, each likely the result of propagules from one or limited sources. The recent invasions of T. evansi illustrate not only the importance of human activities in the spread of agricultural pests, but also the limits of international quarantine procedures, particularly for cryptic invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号