首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
[目的]从一株白腐菌Trametes sp.SQ01中获得一种新型的锰过氧化物酶,探讨该酶的底物特异性和对过氧化氢的耐性,以及其对三苯甲烷类染料的脱色能力.[方法]通过丙酮沉淀和DEAE-cellulose 52柱层析法纯化锰过氧化物酶.利用UV-2010紫外可见分光光度法研究锰过氧化物酶对过氧化氢的耐性,同时,用紫外可见分光光度计对三苯甲烷类染料脱色效果进行分析.[结果]通过两步纯化,获得了均一性的锰过氧化物酶.该酶的最适pH和温度分别是4.5和70℃,在pH 3.0-8.0时,酶活相对稳定.该酶在二价锰离子存在下能够氧化2,6-二甲氧基苯酚、愈创木酚、2,2'-连氮-双-(3-乙基苯并噻唑啉磺酸)和过氧化氢等化合物,同时也能作用二价锰离子.在与这些底物反应中,最适底物为过氧化氢(Km为3.7 tmmol/L).该酶具有抗过氧化氢漂白能力,锰过氧化物酶与高浓度的过氧化氢(2.5 mmol/L)作用60 min后仍能保持70%的活性.在所测试的染料中,锰过氧化物酶对结晶紫的脱色率最高达到65.8%.二价锰离子和过氧化氢对锰过氧化物酶脱色能力的影响进行研究,与孔雀绿相比,锰离子和过氧化氢对活性艳蓝脱色的影响很小.[结论]Trametes sp.SQ01锰过氧化物酶对过氧化氢的耐受性,以及对三苯甲烷类染料的高效脱色能力表明该酶在染料脱色降解方面有着广阔的应用前景.  相似文献   

2.
张桐  张波  李玉 《菌物学报》2018,37(9):1243-1250
本研究通过含亚甲基蓝染料的固体培养基,从19株白腐真菌菌株中分离获得3个脱色能力较强的菌株,其在平板上的脱色圈大小分别为7.5cm、6.8cm和5.5cm。鉴定其为:云芝栓孔菌Trametes versicolor(ZT-197),绒毛栓孔菌Trametes pubescens(ZT-230)和亚黑管孔菌Bjerkandera fumosa(ZT-307)。其中,ZT-230对染料亚甲基蓝的脱色能力最强,可以将染料浓度为50mg/L的100mL液体培养基在6d之内100%脱色,而ZT-197和ZT-307在接种第10天时的脱色率为98%和80%。同时测定了3株白腐真菌在降解染料过程中的漆酶、锰过氧化物酶和木素过氧化物酶3种酶活力的规律:ZT-197和ZT-230均可分泌Lac和MnP两种酶,ZT-307只分泌LiP。本研究说明绒毛栓孔菌ZT-197在印染废水治理方面具有较好的应用前景。  相似文献   

3.
《菌物学报》2017,(11):1575-1582
随着我国印染工业的不断发展,人工合成染料给环境造成严重污染,现急需开发一种成本低廉、脱色效果显著的方法治理水污染问题。本研究发现糙皮侧耳的胞外粗酶液对5种合成染料均具有良好的脱色作用,其中对结晶紫、酸性品红和考马斯亮蓝G-250(浓度为40mg/L)的最高脱色率可分别达到100%、98.67%和92.5%。糙皮侧耳在液体发酵过程中主要产生3种酶类,即漆酶、锰过氧化物酶和木质素过氧化物酶,他们分别在第12天,第7天和第8天酶活达到最高,并且第12天产生的粗酶液对染料的脱色效果最好,根据酶活高峰形成时间与脱色率之间的关系,推测糙皮侧耳分泌的漆酶对染料起主要降解作用,而锰过氧化物酶和木质素过氧化物酶起辅助作用。本研究发现发酵粗酶液较纯化的酶类工艺简单,成本低廉,因此糙皮侧耳发酵液中提取的粗酶液在染料废水脱色处理方面具有潜在的应用价值。  相似文献   

4.
李思  程伟  张富美  尚晓静  侯瑞 《菌物学报》2021,40(6):1511-1524
利用组织分离从未成熟有机蓝莓的表皮中分离出菌株G14,根据其菌落形态、ITS序列对比及系统发育树的分析,鉴定菌株G14为一株烟管孔菌Bjerkandera adusta。菌株G14可以分泌漆酶(laccase,Lac)、木质素过氧化物酶(lignin peroxidase,LiP)和锰过氧化物酶(manganese peroxidase,MnP)3种木质素降解酶,利用单因素和正交试验对活性较高的MnP进行发酵条件优化,同时检测B.adustaG14所产MnP粗酶液对5种染料的脱色能力。结果表明,B.adustaG14在培养6d时MnP活性最大,最优条件为:蔗糖10g/L、pH 7、0.5mmol/L Mn2+、0.1mmol/L Zn2+,该条件下MnP活性达17.74U/L,比优化前提高了1.42倍,B.adustaG14 MnP粗酶液对5种染料均可以脱色,对刚果红和铬黑T染料的脱色效果最好,6d后脱色率达76%和68%。  相似文献   

5.
锰过氧化物酶是真菌分泌的一种糖基化的含有血红素辅基的胞外蛋白,在染料降解和脱色过程中起着重要作用。本实验利用本实验室保存的的白腐真菌裂褶菌Schizophyllum sp.F17产锰过氧化物酶(MnP),研究MnP的酶学性质,并对酶活条件进行优化。实验通过超滤浓缩、DEAE-纤维素、DE52离子交换层析和Sephadex G-75凝胶过滤等步骤,分离纯化得到电泳纯的锰过氧化物酶。该酶蛋白含量为23μg/mL,分子量大小为49.2kDa,在0.1mmol/L H2O2中半衰期为5~6min。Mn2+、H2O2以及酶的用量可以影响MnP酶促反应的效率,在单因子分析法的基础上,通过全因子中心组合设计响应面分析表明:H2O2以及H2O2与酶用量之间的交互作用对酶促反应的作用是最显著的。在优化条件下,酶对偶氮染料金橙G、刚果红显示出较强的脱色能力。  相似文献   

6.
白腐菌产锰过氧化物酶培养基的优化   总被引:12,自引:0,他引:12  
黄孢原毛平革菌(Phanerochaete Chrysosporium)5.776在初始发酵培养基中产胞外锰过氧化物酶活力极低。为了显著提高锰过氧化物酶活力,对初始发酵培养基进行优化。通过调整培养基中碳源、氮源种类和含量,吐温80添加量,Mn^2 终浓度,静置培养温度、时间,采用分光光度计法测定酶活力,发现黄孢原毛平革菌在限氮高锰培养基中产生较高的锰过氧化物酶。静置液体培养的优化条件是:葡萄糖10g/L;酒石酸铵2mmol/L;吐温80 lg/L;Mn^2 9.9μg/L;于34℃静置培养5d;产MnP活力达1200U/L,比优化前提高了近17倍。  相似文献   

7.
罗鑫  覃育贤  于存 《菌物学报》2018,37(9):1233-1242
锰过氧化物酶(manganese peroxidase,MnP)是白腐真菌降解多种异生物质的主要降解酶之一。本研究对白囊耙齿菌Irpex lacteus产MnP的酶活曲线进行监测,利用单因素和正交试验对I. lacteus产MnP的发酵条件进行优化,同时检测了I. lacteus的MnP粗酶液对5种染料的脱色效果。结果显示,I. lacteus在培养5d时MnP活性较大;I. lacteus产MnP较优的条件为:可溶性淀粉20g/L、尿素1g/L、pH 6.3、CaCl2 1mmol/L、FeCl3 1mmol/L,该条件下MnP活性达29.24U/L,与优化前MnP活性相比提高了1.25倍;I. lacteus的MnP粗酶液对5种染料均可脱色,其中对直接大红和活性红的脱色效果更为明显,脱色5d后的脱色率分别达到82%和81%。  相似文献   

8.
尚晓静  张富美  程伟  苏莉  侯瑞 《菌物学报》2020,39(8):1580-1592
通过对兔眼蓝莓幼果组织中分离得到的内生真菌G18进行形态特征、ITS序列和系统进化分析鉴定菌株G18为裂褶菌Schizophyllum commune。同时,对菌株G18产生的3种木质素降解酶进行监测,发现G18菌株可以分泌漆酶、木质素过氧化物酶和锰过氧化物酶。为明确裂褶菌G18对染料的脱色能力,利用裂褶菌G18对固体条件下8种染料进行脱色能力的检测,筛选出较易脱色的染料后,对该染料的脱色条件进行优化。结果表明,裂褶菌G18对8种染料均可以脱色,对孔雀石绿染料的脱色效果最好。裂褶菌G18对孔雀石绿的脱色优化结果为pH 7.0、20.0g/L淀粉、1.0g/L尿素、1.0g/L硫酸锌、接菌量9片(d=5.0mm)。  相似文献   

9.
关于巯基和Mn~(2+)介导豆壳过氧化物酶氧化藜芦醇的研究   总被引:1,自引:0,他引:1  
藜芦醇作为非酚型木素模型物具有较高的氧化还原电位,豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC.1.11.1.7)通过依赖于过氧化氢的正常过氧化物酶催化循环不能氧化藜芦醇,但在还原型谷胱甘肽、Mn2+和有机酸络合剂存在下却可以通过不依赖于过氧化氢的氧化酶反应途径完成对藜芦醇的氧化,产物为藜芦醛,反应最适pH为4.2。动力学研究表明该反应遵循顺规序列反应机制;对藜芦醇的表观KM值为4.3mmol/L,对谷胱甘肽的表观KM值为4.8mmol/L。巯基还原剂二硫苏糖醇、L-半胱氨酸和β-巯基乙醇亦可替代还原型谷胱甘肽促进藜芦醇氧化  相似文献   

10.
随着我国印染工业的发展,废水对生态环境的危害日趋严重,亟需开发一种脱色明显且成本低廉的降解方法。本研究发现毛木耳Auricularia cornea菌株AC5对不同结构的染料均具有一定的降解作用,尤其是三苯甲烷类染料。利用26℃、160r/min振荡培养7d的粗酶液对染料(75.0mg/L)进行12h降解,结果显示三苯甲烷染料孔雀石绿、结晶紫,蒽醌染料活性蓝19和偶氮染料活性蓝222的降解效率分别为83.27%、71.77%、67.81%和63.92%。染料降解实验和酶活力测定结果表明,毛木耳对孔雀石绿的降解率达到最高时漆酶活性最高,为321.0U/mL,木质素过氧化物酶和锰过氧化物酶活性较低。因此,推测在降解过程中漆酶起到主要作用。研究表明利用毛木耳菌丝发酵液降解染料废水成本低且操作方便,为染料废水的降解研究提供了前期基础。  相似文献   

11.
The white rot fungus, Fomes lividus, was isolated from the logs of Shorea robusta in the Western Ghats region of Tamil Nadu, India. The fungus was tested for decolorization of azo dyes such as orange G (50 M) congo red (50 M) amido black 10B (25 M) and also for colour removal from dye industry effluents. The results revealed that the fungus could remove only 30.8% of orange G in the synthetic solution, whereas congo red and amido black 10B were removed by 74.0 and 98.9% respectively. A dye industry effluent was treated by the fungus in batch and continuous mode. In batch mode treatment, a maximum decolorization of 84.4% was achieved on day 4, and in continuous mode a maximum decolorization of 37.5% was obtained on day 5. The colour removal by the basidiomycete fungus might be due to adsorption of the dyes to the mycelial surface and metabolic breakdown. These results suggested that the batch mode treatment of Fomes lividus is one of the most efficient ways for colour removal in dye industry effluents.  相似文献   

12.
Dye decolorization capacity of two white-rot fungi, Irpex lacteus and Phanerochaete chrysosporium, was compared in N-limited liquid cultures. The agitated cultures showed lower ability to decolorize azo dyes Reactive Orange 16 and Naphthol Blue Black than static cultures. Similar effect was also observed with other structurally different synthetic dyes. The effect of surfactants on the decolorization process is discussed. A significant increase in the Reactive Orange 16 decolorization by the agitated I. lacteus cultures was observed after adding 0.1% Tween 80, following a higher Mn-dependent peroxidase production. The in vitro dye decolorization using the purified enzyme proved its decolorization ability.  相似文献   

13.
Partial decolorization of two azo dyes (orange G and amaranth) and complete decolorization of two triphenylmethane dyes (bromophenol blue and malachite green) was achieved by cultures in submerged liquid culture producing laccase as the sole phenoloxidase. Enzyme production could be correlated with dye decolorization, with sorption of dye to mycelia accounting for less than 3% of dye removal.  相似文献   

14.
Pleurotus sajor-caju PS2001 was screened in Petri dish plates to assess the dye-decolorizing ability of industrial textile dyes. P. sajor-caju PS2001 was also cultivated in solid-state fermentation containing sawdust of Pinus sp. and wheat bran to obtain the enzymatic extract, showing laccase and manganese-peroxidase activity, which was used to test the capacity to degrade the textile dyes. Additional tests of decolorization were performed in liquid cultures. Anthraquinone-type textile dyes proved to be substrates for the enzymatic system of P. sajor-caju PS2001. Cultures in Petri dish plates showed that the anthraquinone dye Reactive Blue 220 can act as a redox mediator for the enzymatic reactions involved in the decolorization process, and enables the azo dye degradation. Reactive Blue 220 and Acid Blue 280 were completely decolorized in 30 min and 60 min, respectively, during the tests with precipitated enzymatic extract, while the azo dyes showed resistance to degradation. Additionally, in submerged cultures with dyes, veratryl alcohol oxidases and lignin peroxidase activities were observed. These results suggest that the strain P. sajor-caju PS2001 has great potential for use in the bioremediation technology of recalcitrant pollutant such as textile effluents.  相似文献   

15.
The ligninolytic enzyme system of Phanerochaete chrysosporium decolorizes several recalcitrant dyes. Three isolated lignin peroxidase isoenzymes (LiP 4.65, LiP 4.15, and LiP 3.85) were compared as decolorizers with the crude enzyme system from the culture medium. LiP 4.65 (H2), LiP 4.15 (H7), and LiP 3.85 (H8) were purified by chromatofocusing, and their kinetic parameters were found to be similar. Ten different types of dyes, including azo, triphenyl methane, heterocyclic, and polymeric dyes, were treated by the crude enzyme preparation. Most of the dyes lost over 75% of their color; only Congo red, Poly R-478, and Poly T-128 were decolorized less than the others, 54, 46, and 48%, respectively. Five different dyes were tested for decolorization by the three purified isoenzymes. The ability of the isoenzymes to decolorize the dyes in the presence of veratryl alcohol was generally comparable to that of the crude enzyme preparation, suggesting that lignin peroxidase plays a major role in the decolorization and that manganese peroxidase is not required to start the degradation of these dyes. In the absence of veratryl alcohol, the decolorization activity of the isoenzymes was in most cases dramatically reduced. However, LiP 3.85 was still able to decolorize 20% of methylene blue and methyl orange and as much as 60% of toluidine blue O, suggesting that at least some dyes can function as substrates for isoenzyme LiP 3.85 but not to the same extent for LiP 4.15 or LiP 4.65. Thus, the isoenzymes have different specificities towards dyes as substrates.  相似文献   

16.
Phanerochaete chrysosporium decolorized several polyaromatic azo dyes in ligninolytic culture. The oxidation rates of individual dyes depended on their structures. Veratryl alcohol stimulated azo dye oxidation by pure lignin peroxidase (ligninase, LiP) in vitro. Accumulation of compound II of lignin peroxidase, an oxidized form of the enzyme, was observed after short incubations with these azo substrates. When veratryl alcohol was also present, only the native form of lignin peroxidase was observed. Azo dyes acted as inhibitors of veratryl alcohol oxidation. After an azo dye had been degraded, the oxidation rates of veratryl alcohol recovered, confirming that these two compounds competed for ligninase during the catalytic cycle. Veratryl alcohol acts as a third substrate (with H2O2 and the azo dye) in the lignin peroxidase cycle during oxidations of azo dyes.  相似文献   

17.
The ability of the white-rot fungus Lentinula (Lentinus) edodes to decolorize several synthetic dyes was investigated using solid state cultures with corn cob as substrate. Cultures, containing amido black, congo red, trypan blue, methyl green, remazol brilliant blue R, methyl violet, ethyl violet and Poly R478 at 200 ppm, were completely decolorized after 18 days of incubation. Partial decolorization was observed in the cultures containing 200 ppm of brilliant cresyl blue and methylene blue. High manganese peroxidase activity (2600 U/g substrate), but very low lignin peroxidase (<10 U/g substrate) and laccase (<16 U/g substrate) activities were detected in the cultures. In vitro, the dye decolorization was markedly decreased by the absence of manganic ions and H2O2. These data suggest that manganese peroxidase appear to be the main responsible for the capability of L. edodes to decolorize synthetic dyes.  相似文献   

18.
Neem hull waste (containing a high amount of lignin and other phenolic compounds) was used for lignin peroxidase production byPhanerochaete chrysosporum under solid-state fermentation conditions. Maximum decolorization achieved by partially purified lignin peroxidase was 80% for Porocion Brilliant Blue HGR, 83 for Ranocid Fast Blue, 70 for Acid Red 119 and 61 for Navidol Fast Black MSRL. The effects of different concentrations of veratryl alcohol, hydrogen peroxide, enzyme and dye on the efficiency of decolorization have been investigated. Maximum decolorization efficiency was observed at 0.2 and 0.4 mmol/L hydrogen peroxide, 2.5 mmol/L veratryl alcohol and pH 5.0 after a 1-h reaction, using 50 ppm of dyes and 9.96 mkat/L of enzyme.  相似文献   

19.
Summary The potential of a recently isolated wood-degrading fungus, Trichophyton rubrum LSK-27, for effective decolorization of textile azo dyes was evaluated. Within two days of dye addition, the fungus was able to decolorize 83% of Remazol Tiefschwarz, 86% of Remazol Blue RR and 80% of Supranol Turquoise GGL in liquid cultures. The reactive dyes, Remazol Tiefschwarz and Remazol Blue, were removed by fungal biodegradation, while decolorization of the acid dye, Supranol Turquoise GGL, was accomplished mainly by bioadsorption. Therefore the fungus proved to be efficiently capable of both biodegradation and biosorption as the major dye removal mechanisms. The extent of biodegradation was associated with the levels of the extracellular ligninolytic enzymes such as manganese peroxidase and laccase.  相似文献   

20.
Forty-two white-rot fungi in submerged cultures were tested to determine their dye decolorization capacity and the optimal conditions for the decolorization process. Trametes pubescens Cui 7571 was found to be the most effective strain in terms of decolorization performance on the azo dye Congo Red, and it exhibited excellent reusability as well as persistence in sequential decolorization experiments. Optimization of the decoloration process was also conducted to evaluate the effects of a number of chemical compounds, metal salts, inducers, and mediators on the dye decolorization rate. On the seventh day, a highest dye removal of 98.83 % was observed with addition of copper at 2.5 mmol L?1, Tween 80 at 1.0 % (v/v), and ferulic acid at 0.50 μmol L?1, respectively. The adsorption of mycelia to dyes was not a significant contributor to dye removal, and decolorization by the functional fungus T. pubescens depended on biodegradation by enzymes, as evidenced by the results of the moist heat sterilization treatment (121°C for 20 min), induction of extracellular enzymes, and scanning electron microscopy. Four dye degradation metabolites, i.e., naphthalene amine, biphenyl amine, biphenyl ,and naphthalene diazonium, were identified by Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. The phytotoxicity tests indicated that degraded metabolites had almost a negligible effect on the plant seeds as compared to that of dye, which is indicative of the less toxic nature of the metabolites. Our results suggest that white-rot fungus T. pubescens could be developed into a novel azo dye bioremediation strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号