首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Synthetic copolymers containing tyrosine residues were used to characterize the substrate specificity of the insulin receptor kinase and compare it to tyrosine kinases stimulated by epidermal growth factor, insulin-like growth factor-1 and phorbol ester. In partially purified receptor preparations from eight different tissues insulin best stimulated (highest V) phosphorylation of a random copolymer composed of glutamic and tyrosine residues at a 4:1 ratio (Glu/Tyr, 4:1). The insulin-stimulated phosphorylation of this polymer was highly significant also in receptor preparations from fresh human monocytes, where insulin binding and autophosphorylation were difficult to detect. Other tyrosine-containing polymers Ala/Glu/Lys/Tyr (6:2:5:1) and Glu/Ala/Tyr (6:3:1) were also phosphorylated by the insulin-stimulated kinase but to a lower extent. A tyrosine kinase stimulated by insulin-like growth factor-1, and one stimulated by phorbol ester also best phosphorylated the polymer Glu/Tyr (4:1). The three kinases differed only in their capability to phosphorylate Glu/Ala/Tyr (6:3:1) or Ala/Glu/Lys/Tyr (6:2:5:1). Glu/Tyr (4:1) was a poor substrate for the epidermal growth factor receptor kinase which best phosphorylated the polymer Glu/Ala/Tyr (6:3:1). Three additional polymers: Glu/Tyr (1:1), Glu/Ala/Tyr (1:1:1), and Lys/Tyr (1:1) failed to serve as substrates for all four tyrosine kinases tested. Taken together these findings suggest that. Hormone-sensitive tyrosine kinases have similar yet distinct substrate specificity and are likely to phosphorylate their native substrates on tyrosines adjacent to acidic (glutamic) residues. Tyrosine-containing polymer substrates are highly sensitive and convenient tools to study (hormone-sensitive) tyrosine kinases whose native substrates are unknown or present at low concentrations.  相似文献   

2.
A 68-kDa protein that was tyrosine phosphorylated in the presence of Zn2+ and two proteins of 52 and 46 kDa that were tyrosine phosphorylated in the presence of Mg2+ were separated by column chromatography of a sheep platelet high speed supernatant on poly(Glu, Tyr)4:1 copolymer-Sepharose or tyrosine-Sepharose. Phosphorylation of the 68-kDa protein occurred maximally in the presence of Zn2+ while Mg2+ was ineffective. The kinases responsible for the Zn(2+)- and Mg(2+)-dependent tyrosine phosphorylation could also tyrosine phosphorylate poly(Glu, Tyr)4:1, histone, and angiotensin II with the same metal ion specificity. The two tyrosine kinase activities could be also distinguished by their differential response to polyamines and quercetin. Zn2+ stimulation did not appear to be due to the inhibition of a protein tyrosine phosphatase. Sephadex G-100 gel filtration of the fraction showing Zn(2+)-dependent tyrosine phosphorylation of the 68-kDa protein showed that the tyrosine kinase activity corresponded to a molecular mass of 68,000 and it showed a protein band of 68 kDa as detected by silver staining on sodium dodecyl sulfate-polyacrylamide gel.  相似文献   

3.
A protein tyrosine kinase has been purified from the particulate fraction of bovine spleen to a specific activity of 0.217 mumol/min/mg at 100 microM ATP and 3 mM [Val5] angiotensin II. Both the angiotensin phosphorylation activity and immunoreactivity towards an antibody preparation raised against a synthetic peptide containing the autophosphorylation site of pp60c-src, Cys-src(403-421), were monitored during the purification. The purified sample displayed three closely spaced protein bands with molecular weights of 50-55 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All bands could be phosphorylated exclusively on tyrosine residues under autophosphorylation conditions. All reacted on immunoblots with an antibody raised against a synthetic peptide corresponding to the consensus autophosphorylation site of members of the pp60c-src family of tyrosine kinases. Tryptic phosphopeptide maps of the three proteins were essentially indistinguishable. The results suggest that the purified enzyme preparation contained mainly three closely related pp60c-src-family protein tyrosine kinases or a pp60src-family protein tyrosine kinase modified posttranslationally to give three closely spaced protein bands on sodium dodecyl sulfate gel. Neither of these proteins appears to be pp60c-src or p56lck. The spleen protein tyrosine kinase was found to phosphorylate a p34cdc2 kinase peptide, Cys-cdc2(8-20), which contained the regulatory tyrosine residue Tyr-15 about 20 times better than [Val5]angiotensin II or Cys-src(403-421) peptide at a peptide substrate concentration of 1 mM. In contrast, epidermal growth factor receptor kinase partially purified from A431 cells did not show preference for Cys-cdc2(8-20) as its substrate. Although Cys-cdc2(8-20) contained two tyrosine residues, only the tyrosine corresponding to Tyr-15 in p34cdc2 was phosphorylated by the spleen tyrosine kinase. The observation suggests that the primary structure surrounding Tyr-15 of p34cdc2 contains substrate structural determinants specific for the spleen tyrosine kinase.  相似文献   

4.
The nuclear matrix isolated from rat liver phosphorylated exogenous tyrosine-containing substrates angiotensin II and synthetic polymer (Glu, Tyr; 4:1). The phosphorylation reaction was dependent on Mn2+ or Mg2+, but the former was the preferred ion. Km values for poly(Glu,Tyr; 4:1) and ATP were 0.2 mM and 4 microM, respectively. Angiotensin II showed a lower affinity for the kinase than poly(Glu,Tyr; 4:1). The isoflavone genistein, a specific inhibitor for tyrosine phosphorylation, inhibited the tyrosine kinase activity in the nuclear matrix.  相似文献   

5.
The inhibitory effect of gallic acid (3,4,5-trihydroxybenzoic acid), and its ester derivatives methyl, propyl, octyl and lauryl has been tested on the tyrosine kinase activity of affinity purified c-Src from human platelets, using the artificial substrate Poly (Glu.Na, Tyr) 4:1. When tested as inhibitor of the autophosphorylation of the enzyme and the phosphorylation of the protein tyrosine phosphatase SHP-1 by c-Src, lauryl gallate was found to be a more potent inhibitor than other widely used protein tyrosine kinase (PTK) inhibitors such as genistein and herbimycin A. However, lauryl gallate did not inhibit the activity of the serine threonine kinases protein kinase A (PKA) and casein kinase II (CKII) from rat brain.  相似文献   

6.
The inhibitory effect of gallic acid (3,4,5-trihydroxybenzoic acid), and its ester derivatives methyl, propyl, octyl and lauryl has been tested on the tyrosine kinase activity of affinity purified c-Src from human platelets, using the artificial substrate Poly (Glu,Na,Tyr) 4:1. When tested as inhibitor of the autophosphorylation of the enzyme and the phosphorylation of the protein tyrosine phosphatase SHP-1 by c-Src, lauryl gallate was found to be a more potent inhibitor than other widely used protein tyrosine kinase (PTK) inhibitors such as genistein and herbimycin A. However, lauryl gallate did not inhibit the activity of the serine threonine kinases protein kinase A (PKA) and casein kinase II (CKII) from rat brain.  相似文献   

7.
A Saccharomyces cerevisiae lambda gt11 library was screened with antiphosphotyrosine antibodies in an attempt to identify a gene encoding a tyrosine kinase. A subclone derived from one positive phage was sequenced and found to contain an 821-amino-acid open reading frame that encodes a protein with homology to protein kinases. We tested the activity of the putative kinase by constructing a vector encoding a glutathione-S-transferase fusion protein containing most of the predicted polypeptide. The fusion protein phosphorylated endogenous substrates and enolase primarily on serine and threonine. The gene was designated SPK1 for serine-protein kinase. Expression of the Spk1 fusion protein in bacteria stimulated serine, threonine, and tyrosine phosphorylation of bacterial proteins. These results, combined with the antiphosphotyrosine immunoreactivity induced by the kinase, indicate that Spk1 is capable of phosphorylating tyrosine as well as phosphorylating serine and threonine. In in vitro assays, the fusion protein kinase phosphorylated the synthetic substrate poly(Glu/Tyr) on tyrosine, but the activity was weak compared with serine and threonine phosphorylation of other substrates. To determine if other serine/threonine kinases would phosphorylate poly(Glu/Tyr), we tested calcium/calmodulin-dependent protein kinase II and the catalytic subunit of cyclic AMP-dependent protein kinase. The two kinases had similar tyrosine-phosphorylating activities. These results establish that the functional difference between serine/threonine- and tyrosine-protein kinases is not absolute and suggest that there may be physiological circumstances in which tyrosine phosphorylation is mediated by serine/threonine kinases.  相似文献   

8.
We have tested the hypothesis that activation of the insulin receptor tyrosine kinase is due to autophosphorylation of tyrosines 1146, 1150 and 1151 within a putative autoinhibitory domain. A synthetic peptide corresponding to residues 1134–1162, with tyrosines substituted by alanine or phenylalanine, of the insulin receptor subunit was tested for its inhibitory potency and specificity towards the tyrosine kinase activity. This synthetic peptide gave inhibition of the insulin receptor tyrosine kinase autophosphorylation and phosphorylation of the exogenous substrate poly(Glu, Tyr) with an approximate IC50 of 100 M. Inhibition appeared to be independent of the concentrations of insulin or the substrate poly(Glu, Tyr) but was decreased by increasing concentrations of ATP. This same peptide also inhibited the EGF receptor tyrosine kinase but not a serine/threonine protein kinase. These results are consistent with the hypothesis that this autophosphorylation domain contains an autoinhibitory sequence. (Mol Cell Biochem120: 103–110, 1993)Abbreviations IR Insulin Receptor - SDS/PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis - CaM Calmodulin - HEPES 4-(2-Hydroxyethyl)-Piperazineethane-Sulfonic Acid - DMEM Dulbecco's Modified Eagle' Medium - PMSF Phenylmethyl-Sulfonyl Fluoride - HPLC High Performance Liquid Chromatography - PKC Protein Kinase C - PKI Inhibitory Peptide for cAMP-Kinase - CaMK II Ca2+/Calmodulin-Dependent Protein Kinase II - CaN A A Subunit of Calcineurin  相似文献   

9.
A protein-tyrosine kinase has been isolated from a detergent-soluble extract of boar spermatozoa, using poly(Glu, Tyr)4:1 as a substrate. The purification procedure involves sequential column chromatographies on phosphocellulose, polyamino acid affinity and Sephadex G-100 molecular sieving, and results in more than a 1200-fold enrichment. Analysis of the most purified preparation by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a major Coomassie blue-stained band of molecular mass 42 kDa. The Tyr-protein kinase does not seem to be autophosphorylable. The Km value for poly(Glu, Tyr)4:1 is relatively low, 2.3 microM, and the tyrosine-polymer phosphorylating activity is apparently inhibited by tyrphostin. The characteristics shown by this new tyrosine kinase--the first to be described in mature male germ cells--support the hypothesis that it belongs to the group of non-receptor-associated tyrosine kinases.  相似文献   

10.
A protein kinase of 57 kDa, able to phosphorylate tyrosine in synthetic substrates pol(Glu4,Tyr1) and a fragment of Src tyrosine kinase, was isolated and partly purified from maize seedlings (Zea mays). The protein kinase was able to phosphorylate exogenous proteins: enolase, caseins, histones and myelin basic protein. Amino acid analysis of phosphorylated casein and enolase, as well as of phosphorylated endogenous proteins, showed that both Tyr and Ser residues were phosphorylated. Phosphotyrosine was also immunodetected in the 57 kDa protein fraction. In the protein fraction there are present 57 kDa protein kinase and enolase. This co-purification suggests that enolase can be an endogenous substrate of the kinase. The two proteins could be resolved by two-dimensional electrophoresis. Specific inhibitors of typical protein-tyrosine kinases had essentially no effect on the activity of the maize enzyme. Staurosporine, a nonspecific inhibitor of protein kinases, effectively inhibited the 57 kDa protein kinase. Also, poly L-lysine and heparin inhibited tyrosine phosphorylation by 57 kDa maize protein kinase. The substrate and inhibitor specificities of the 57 kDa maize protein kinase phosphorylating tyrosine indicate that it is a novel plant dual-specificity protein kinase.  相似文献   

11.
Epidermal growth factor (EGF)-receptor mutants in which individual autophosphorylation sites (Tyr1068, Tyr1148 or Tyr1173) have been replaced by phenylalanine residues were expressed in NIH-3T3 cells lacking endogenous EGF-receptors. Kinetic parameters of the kinase of wild-type and mutant receptors were compared. Both wild-type and mutant EGF-receptors had a Km(ATP) 1-3 microM for the autophosphorylation reaction, and a Km(ATP) of 3-7 microM for the phosphorylation of a peptide substrate. These are similar to the Km(ATP) values reported for EGF-receptor of A431 cells. A synthetic peptide representing the major in vitro autophosphorylation site Tyr1173 of the EGF-receptor (KGSTAENAEYLRV) was phosphorylated by wild-type receptor with a Km of 110-130 microM, and the peptide inhibited autophosphorylation with a Ki of 150 microM. Mutant EGF-receptors phosphorylated the peptide substrate with a Km of 70-100 microM. A similar decrease of Km (substrate) was obtained when the phosphorylation experiments were performed with the commonly applied substrates angiotensin II and a peptide derived from c-src. The Km of angiotensin II phosphorylation was reduced from 1100 microM for wild-type receptor to 890 microM for mutant receptor and for c-src peptide from 1010 microM to 770 microM respectively. The Vmax of the kinase was dependent on receptor concentration, but was not significantly affected by the mutation. Analogs of the Tyr1173 peptide in which the tyrosine residue was replaced by either a phenylalanine or an alanine residue also inhibited autophosphorylation with Ki of 650-750 microM. These analyses show that alterations of individual autophosphorylation sites do not have a major effect on kinase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A solid immunoassay for the detection of protein tyrosine kinases has been developed. It is based on the binding of the synthetic polypeptide poly(Glu.Na,Tyr) 4:1 to microELISA wells, where the phosphorylation reaction takes place in the presence of ATP and enzyme. The phosphorylated tyrosine residues produced in the reaction are finally detected, in the same well, by means of an ELISA using monoclonal antiphosphotyrosine antibody, peroxidase-labeled goat anti-mouse IgG antibody, and substrate. The amount of protein tyrosine kinase activity present in the sample is proportional to the color at 492 nm developed in each well.  相似文献   

13.
A protein tyrosine kinase with an apparent Mr of 60,000 was highly purified from bovine spleen and used to phosphorylate poly(Glu, Tyr) (4:1) on tyrosine residues for the study of phosphotyrosyl protein phosphatases from this tissue. About 70% of the phosphotyrosyl protein phosphatase activity in extracts of bovine spleen was adsorbed on DEAE-Sepharose. Chromatography of the eluted phosphotyrosyl protein phosphatases on phosphocellulose indicated the presence of at least two species, one that did not bind to the phosphocellulose and a second species that did bind and was eluted at about 0.5 M NaCl. The phosphatase that did not bind to phosphocellulose was further purified by successive chromatography on poly(L-lysine)-Sepharose, L-tyrosine-agarose, poly(Glu,Tyr)-Sepharose, and Sephacryl S-200. The enzyme had an apparent Mr of 50,000 as estimated by gel filtration and 52,000 as estimated by NaDodSO4- polyacrylamide gel electrophoresis. The phosphatase exhibited a pH optimum of 6.5-7.0, was inhibited by Zn2+ and vanadate ions, and was stimulated by EDTA. Sodium fluoride and sodium pyrophosphate, inhibitors of phosphoseryl protein phosphatases, had no effect on the enzyme. Protein inhibitors of type 1 phosphoseryl/threonyl phosphatase were also ineffective.  相似文献   

14.
To approach the question of why insulin-like growth factor-I (IGF-I) and insulin have different physiological actions, we developed antibodies directed against cytoplasmic regions of the IGF-I receptor exhibiting a low degree of homology with the corresponding sequences of the insulin receptor. We found that an antipeptide antibody directed against the beta-subunit carboxyl-terminal sequence (1232-1246) of the IGF-I receptor significantly reduced the in vitro receptor autophosphorylation. The ability of the synthetic peptide corresponding to the IGF-I receptor sequence 1232-1246 to abolish this inhibitory effect reflects the specific nature of the antibody interaction with the targeted domain in the receptor. Antipeptide antibody to IGF-I receptor sequence 1232-1246 also decreased receptor phosphorylation activity toward the exogenous substrate poly(Glu/Tyr). The reduction in poly(Glu/Tyr) phosphorylation was seen even when the antibody was incubated with a receptor previously activated and phosphorylated. Therefore, the inhibitory action on substrate phosphorylation is likely to be unrelated to the antibody reduction of receptor autophosphorylation but rather results from a global decrease in receptor enzymatic activity. The effect of the antipeptide antibody on receptor tyrosine kinase cannot be accounted for by a lowering of the receptor Km for ATP or of its affinity for the substrate poly(Glu/Tyr). Moreover, the interaction of the antibody with the receptor had no repercussion on the ligand binding site as shown by the unaltered IGF-I binding. Taken together our data suggest that the beta-subunit carboxyl-terminal domain of the IGF-I receptor plays a key role in regulating its kinase activity and that the particular sequence recognized by our antipeptide antibody could be involved in negative regulation of receptor functioning.  相似文献   

15.
We recently reported that Arachis hypogaea serine/threonine/tyrosine (STY) protein kinase is developmentally regulated and is induced by abiotic stresses (Rudrabhatla, P., and Rajasekharan, R. (2002) Plant Physiol. 130, 380-390). Other than MAPKs, the site of tyrosine phosphorylation has not been documented for any plant kinases. To study the role of tyrosines in the phosphorylation of STY protein kinase, four conserved tyrosine residues were sequentially substituted with phenylalanine and expressed as histidine fusion proteins. Mass spectrometry experiments showed that STY protein kinase autophosphorylated within the predicted kinase ATP-binding motif, activation loop, and an additional site in the C terminus. The protein kinase activity was abolished by substitution of Tyr(297) with Phe in the activation loop between subdomains VII and VIII. In addition, replacing Tyr(148) in the ATP-binding motif and Tyr(317) in the C-terminal domain with Phe not only obliterated the ability of the STY protein kinase protein to be phosphorylated, but also inhibited histone phosphorylation, suggesting that STY protein kinase is phosphorylated at multiple sites. Replacing Tyr(213) in the Thr-Glu-Tyr sequence motif with Phe resulted in a 4-fold increase in autophosphorylation and 2.8-fold increase in substrate phosphorylation activities. Mutants Y148F, Y297F, and Y317F displayed dramatically lower phosphorylation efficiency (k(cat)/K(m)) with ATP and histone, whereas mutant Y213F showed increased phosphorylation. Our results suggest that autophosphorylation of Tyr(148), Tyr(213), Tyr(297), and Tyr(317) is important for the regulation of STY protein kinase activity. Our study reveals the first example of Thr-Glu-Tyr domain-mediated autoinhibition of kinases.  相似文献   

16.
Interleukin 2 (IL-2) has been shown to stimulate tyrosine phosphorylation of a number of proteins requiring only the p75 beta chain of the IL-2 receptor. Unlike the receptors for epidermal growth factor, insulin, and other growth factors, the p55-alpha and p75-beta chains of the IL-2 receptor have no tyrosine protein kinase domain suggesting that the IL-2 receptor complex activates protein kinases by a unique mechanism. The activation of tyrosine kinases by IL-2 in situ was studied and using a novel methodology has shown tyrosine kinase activity associated with the purified IL-2R complex in vitro. IL-2 stimulated the in situ tyrosine phosphorylation of 97 kDa and 58 kDa proteins which bound to poly(Glu,Tyr)4:1, a substrate for tyrosine protein kinases, suggesting these proteins had characteristics found in almost all tyrosine kinases. IL-2 was found to stimulate tyrosine protein kinase activity in receptor extracts partially purified from human T lymphocytes and the YT cell line. Biotinylated IL-2 was used to precipitate the high-affinity-receptor complex and phosphoproteins associated with it. The data indicated that the 97-kDa and 58-kDa phosphotyrosyl proteins were tightly associated with the IL-2 receptor complex. These proteins were phosphorylated on tyrosine residues by IL-2 stimulation of intact cells and ligand treatment of in vitro receptor extracts. Furthermore, the 97-kDa and 58-kDa proteins were found in streptavidin-agarose/biotinylated IL-2 purified receptor preparations and showed high affinity for tyrosine kinase substrate support matrixes. The experiments suggest that these two proteins are potential candidates for tyrosine kinases involved in the IL-2R complex signal transduction process.  相似文献   

17.
Identification of RET autophosphorylation sites by mass spectrometry   总被引:4,自引:0,他引:4  
The catalytic and signaling activities of RET, a receptor-type tyrosine kinase, are regulated by the autophosphorylation of several tyrosine residues in the cytoplasmic region of RET. Some studies have revealed a few possible autophosphorylation sites of RET by [(32)P]phosphopeptide mapping or by using specific anti-phosphotyrosine antibodies. To ultimately identify these and other autophosphorylation sites of RET, we performed mass spectrometry analysis of an originally prepared RET recombinant protein. Both the autophosphorylation and kinase activity of myelin basic protein as an external substrate of the recombinant RET protein were substantially elevated in the presence of ATP without stimulation by a glial cell line-derived neurotrophic factor, a natural ligand for RET. Mass spectrometric analysis revealed that RET Tyr(806), Tyr(809), Tyr(900), Tyr(905), Tyr(981), Tyr(1062), Tyr(1090), and Tyr(1096) were autophosphorylation sites. Levels of autophosphorylation and kinase activity of RET-MEN2A (multiple endocrine neoplasia 2A), a constitutively active form of RET with substitution of Tyr(900) by phenylalanine (Y900F), were comparable with those of original RET-MEN2A, whereas those of the mutant Y905F were greatly decreased. Interestingly, those of a double mutant, Y900F/Y905F, were completely abolished. Both the kinase activity and transforming activity were impaired in the mutants Y806F and Y809F. These results provide convincing evidence for both previously suggested and new tyrosine autophosphorylation sites of RET as well as for novel functions of Tyr(806), Tyr(809), and Tyr(900) phosphorylation in both catalytic kinase activities and cell growth. The significance of the identified autophosphorylation sites in various protein-tyrosine kinases registered in a data base is discussed in this paper.  相似文献   

18.
Protein-tyrosine kinases contain a catalytic loop Arg residue located either two or four positions downstream of a highly conserved Asp residue. In this study, the role of this Arg (Arg-318) in the protein-tyrosine kinase C-terminal Src kinase (Csk) was investigated. The observed k(cat) for phosphorylation of the random copolymer poly(Glu,Tyr) substrate by Csk R318A is approximately 3000-fold smaller compared with that of wild type Csk, whereas the K(m) values for ATP and poly(Glu,Tyr) are only mildly affected. The k(cat) value for poly(Glu,Tyr) phosphorylation by the Csk double mutant A316R,R318A is 100-fold greater than the k(cat) value for the single R318A mutant, suggesting that an Arg positioned at the alternative location fulfills a similar function as in wild type. Csk R318A kinase activity can also be partially recovered by several exogenous small molecules including guanidinium and imidazole. These molecules contain key features whose roles in catalysis can be rationalized from a known x-ray structure of the insulin receptor tyrosine kinase. Imidazole is the best of these activators, enhancing phosphorylation rates by Csk R318A up to 100-fold for poly(Glu,Tyr) and significantly stimulating Csk R318A phosphorylation of the physiologic substrate Src. This chemical rescue of mutant protein kinase activity might find applications in cell signal transduction experiments.  相似文献   

19.
Adriamycin, a lipid-interacting anti-cancer agent, was found to inhibit the phosphorylation of polyGlu/Tyr (4:1) by tyrosine protein kinases either from spleen or expressed by the oncogene of Abelson murine leukemia virus. The dose dependent inhibition by adriamycin is accounted for by competition for the ATP binding site, but it is also deeply influenced by the nature and concentration of the phosphorylatable substrate, suggesting multiple interactions with the enzyme. The phosphorylation at tyrosine residues of cytosolic proteins from cells transformed by Abelson leukemia virus and the autophosphorylation of tyrosine protein kinases are also inhibited by adriamycin. Unlike tyrosine protein kinases most serine/threonine specific protein kinases, with the notable exception of protein kinase-C, appear to be relatively insensitive to adriamycin.  相似文献   

20.
The cytoplasmic domain of the platelet-derived growth factor (PDGF) beta-receptor was expressed in insect cells by using a baculovirus system. The resulting protein was a constitutively active tyrosine kinase that could phosphorylate both protein and peptide substrates. A recently identified potent and selective inhibitor of intact PDGF receptor autophosphorylation, 3744W, inhibited the autophosphorylation of the cytoplasmic domain both in vitro (IC50 1.8+/-0.12 microM) and within intact insect cells (IC50 2.0 microM). However, under identical assay conditions, 3744W did not inhibit the phosphorylation of the synthetic polymeric peptide poly(Glu4Tyr1) even at concentrations as high as 100 microM. These results suggest that, although 3744W inhibits PDGF receptor autophosphorylation directly, it can discriminate between phosphate acceptor substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号