首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Huang X  Wei Z  Zhao G  Gao X  Yang S  Cui Y 《Current microbiology》2008,56(4):376-381
In this paper, the sensitivity of Escherichia coli to surfactin and fengycin was observed, and the optimization of the antimicrobial activity of surfactin and fengycin to E. coli in milk by a response surface methodology was studied. Results showed that E. coli had high sensitivity to these antibiotics, whose minimal inhibitory concentrations were 15.625 μg·mL−1 and 31.25 μg·mL−1, respectively. The optimization result indicated that E. coli could be sterilized by 5 orders of magnitude when the temperature was 5.5°C, the action time was 15.8 h, and the concentration (surfactin/fengycin weight ratio 1:1) was 14.63 μg·mL−1.  相似文献   

2.
An endophytic Xylaria sp., having broad antimicrobial activity, was isolated and characterized from Ginkgo biloba L. From the culture extracts of this fungus, a bioactive compound P3 was isolated by bioactivity-guided fractionation and identified as 7-amino-4-methylcoumarin by nuclear magnetic resonance, infrared, and mass spectrometry spectral data. The compound showed strong antibacterial and antifungal activities in vitro against Staphylococcus aureus [minimal inhibitory concentrations (MIC) 16 μg·ml−1], Escherichia coli (MIC, 10 μg·ml−1), Salmonella typhia (MIC, 20 μg·ml−1), Salmonella typhimurium (MIC, 15 μg·ml−1), Salmonella enteritidis (MIC, 8.5 μg·ml−1), Aeromonas hydrophila (MIC, 4 μg·ml−1), Yersinia sp. (MIC, 12.5 μg·ml−1), Vibrio anguillarum (MIC, 25 μg·ml−1), Shigella sp. (MIC, 6.3 μg·ml−1), Vibrio parahaemolyticus (MIC, 12.5 μg·ml−1), Candida albicans (MIC, 15 μg·ml−1), Penicillium expansum (MIC, 40 μg·ml−1), and Aspergillus niger (MIC, 25 μg·ml−1). This is the first report of 7-amino-4-methylcoumarin in fungus and of the antimicrobial activity of this metabolite. The obtained results provide promising baseline information for the potential use of this unusual endophytic fungus and its components in the control of food spoilage and food-borne diseases.  相似文献   

3.
The effect of the fungicide, chlorothalonil, on vesicular-arbuscular mycorrhizal (VAM) symbiosis was studied in a greenhouse using Leucaena leucocephala as test plant. Chlorothalonil was applied to soil at 0, 50, 100 and 200 μg g−1. The initial soil solution P levels were 0.003 μg mL−1 (sub-optimal) and 0.026 μg mL−1 (optimal). After 4 weeks, the sub-optimal P level was raised to 0.6 μg mL−1 (high). The soil was either uninoculated or inoculated with the VAM fungus, Glomus aggregatum. The fungicide reduced mycorrhizal colonization of roots, development of mycorrhizal effectiveness, shoot P concentration and uptake and dry matter yields at all concentrations tested, although the highest inhibitory effect was noted as the concentration of the fungicide was increased from 50 to 100 μg g−1. Phosphorus applied after four weeks tended to partially offset the deleterious effects of chlorothalonil in plants grown in the inoculated and uninoculated soil which suggests that the fungicide was interfering with plant P uptake. The results suggest that the use of chlorothalonil should be restricted to levels below 50 μg g−1 if the benefits of mycorrhizal symbiosis are to be expected. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464.  相似文献   

4.
The algal spore lytic fatty acid of heptadeca-5,8,11-trien (HpDTE: C17:3) was isolated from the crustose coralline seaweed Lithophyllum yessoense. HpDTE, an odd-numbered carbon fatty acid, showed more than 50% lysis at a concentration of 5 μg.mL−1 against the spores of three chlorophyte species, nine rhodophytes, four phaeophytes, and the cells of four phytoplankton species. Lysis activity increased with the number of double bonds and carbon atoms in the fatty acid increased. HpDTE showed a ten-fold stronger activity with a LC50 of 3.1 μg.mL−1 than α-linolenic acid (C18:3).  相似文献   

5.
Chemotherapeutic agents play an important role in cancer treatment mostly due their systemic action on human organism allowing access to liquid tumors and even metastases. Among these drugs, ruthenium compounds have been showing promising results to treat tumors and represent an important development of new antitumor therapy. This study presents the evaluation of cis-(dichloro)tetraammineruthenium(III) chloride, cis-[RuCl2(NH3)4]Cl, genotoxic effects using human peripheral blood lymphocytes cultured in vitro. Mitotic index (MI), chromosome aberrations (CA), and DNA damage using the comet assay were analyzed. MI in human peripheral blood lymphocyte cultures treated with 1, 10, 100, and 1,000 μg mL−1 cis-[RuCl2(NH3)4]Cl were 5.9%, 4.6%, 3.9%, and 0%, respectively. Doxorubicin chloridate was used as the positive control. CA derived from 1, 10, and 100 μg mL−1 concentrations were defined as spontaneous when compared with the negative control, and at the concentration of 1,000 μg mL−1, the cell cycle was inhibited (IM = 0%). Results obtained for the comet assay using cis-[RuCl2(NH3)4]Cl suggest that this compound has no genotoxic activity against cultured human peripheral blood lymphocytes.  相似文献   

6.
Phorbol 12-myristate 13-acetate (PMA), a stimulator of PKC, was examined for its influence on K+ (86Rb) influx in the frog erythrocyte. PMA, 0.1 μM, was found to accelerate ouabain-sensitive K+ influx, which was suppressed by 73% with 1 mM amiloride, indicating secondary activation of the Na+–K+-pump due to stimulation of Na/H+ exchange. PMA-induced stimulation of the sodium pump was completely inhibited with 1 μM staurosporine and by ~50% with 20 μM chelerythrine. In contrast to Na+–K+-pump, an activity of Cl-dependent K+ transport (K–Cl cotransport, KCC), calculated as the difference between K+ influxes in Cl and NO3 -media, was substantially decreased under the influence of PMA. Staurosporine fully restored the PMA-induced inhibition of KCC, whereas chelerythrine did not exert any influence. Osmotic swelling of the frog erythrocytes was accompanied by approximately twofold stimulation of KCC. Swelling-activated KCC was inhibited by ~50 and ~83% in the presence of PMA and genistein, respectively, but not chelerythrine. Exposure of the frog erythrocytes to 5 mM fluoride (F) also reduced the KCC activity in isotonic and hypotonic media, with maximal suppression of K+ influx in both media being observed upon simultaneous addition of PMA and F. Furosemide and [(dihydronindenyl)oxy] alkanoic acid inhibited the K+ influx in both the media by ~50–60%. The results obtained show both the direct and indirect effects of PMA on the K+ transport in frog erythrocytes and a complicated picture of KCC regulation in frog erythrocytes with involvement of PKC, tyrosine kinase and protein phosphatase.  相似文献   

7.
Light irradiation had remarkable effects on callus growth of Oldenlandia affinis with an optimum intensity of 35 μmol m−2 s−1. Biosynthesis of kalata B1, the main cyclic peptide in O. affinis, was induced and triggered with rising irradiation intensities. The highest concentration of kalata B1, 0.49 mg g−1 DW characterised by the maximum productivity of 3.88 μg per litre and day was analysed at 120 μmol m−2 s−1, although callus growth was repressed. The light saturation point was established to be 35 μmol m−2 s−1, where kalata B1 productivity was in a similar order (3.41 μg per day) due to the higher growth index. O. affinis suspension cultures were shown to accumulate comparable specific kalata B1 concentrations in a delayed growth associated production pattern. These were dependent on irradiation intensity (0.16 mg g−1 at 2 μmol m−2 s−1; 0.28 mg g−1 at 35 μmol m−2 s−1). The batch cultivation process resulted in a maximum productivity of 27.30 μg per litre and day with culture doubling times of 1.16 d−1. Submers operation represented a 8-fold product enhancement compared to callus cultivation.  相似文献   

8.
We determined the structure of two compounds, namely, 5,8,11,14,17-eicosapentaenoic acid (EPA) and di-n-octylphthalate (DnOP), which have algicidal activity against the toxic dinoflagellate, Cochlodinium polykrikoides. The polyunsaturated fatty acid EPA and the anthropogenic DnOP were isolated from the MeOH extract of the red alga Corallina pilulifera. We also found that a commercial EPA has algicidal activity identical to that of the EPA purified from C. pilulifera. At low inoculum (5.0 × 102 cells mL−1), the highest algicidal activity of a commercial EPA exhibited approximately 92.6% algicidal activity after 1 h and 96.8% after 6 h treatment at 6 μg mL−1, respectively. At high inoculum (1.0 × 104 cells mL−1), the strongest algicidal activity of EPA showed 69.5% after 1 h and 75.5% algicidal activity after 6 h treatment at 6 μg mL−1, respectively. However, EPA did not show algicidal activity against several microalgae used in aquaculture such as Pavlova lutheri, Tetraselmis suecica, Isochrysis galbana, and Nannochloris oculata for 6 h treatment at 6 μg mL−1. The algicidal activity of the five red tide strains to EPA (3 μg mL−1) showed about 86.6%, 86.6%, and 67.3% algicidal activity against Skeletonema costatum, Chaetoceros curvisetus, and C. polykrikoides after 1 h treatment at low inoculum (5.0 × 102 cells mL−1), respectively, but not against Prorocentrum minimum and Scrippsiella trochoidea. We concluded that EPA might be useful as a controlling agent of harmful algal blooms.  相似文献   

9.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

10.
Pollution of terrestrial surfaces and aquatic systems by hexavalent chromium, Cr(VI), is a worldwide public health problem. A chromium resistant bacterial isolate identified as Exiguobacterium sp. GS1 by 16S rRNA gene sequencing displayed high rate of removal of Cr(VI) from water. Exiguobacterium sp. GS1 is 99% identical to Exiguobacterium acetylicum. The isolate significantly removed Cr(VI) at both high and low concentrations (1–200 μg mL−1) within 12 h. The Michaelis–Menten K m and V max for Cr(VI) bioremoval were calculated to be 141.92 μg mL−1 and 13.22 μg mL−1 h−1, respectively. Growth of Exiguobacterium sp. GS1 was indifferent at 1–75 μg mL−1 Cr(VI) in 12 h. At initial concentration of 8,000 μg L−1, Exiguobacterium sp. GS1 displayed rapid bioremoval of Cr(VI) with over 50% bioremoval in 3 h and 91% bioremoval in 8 h. Kinetic analysis of Cr(VI) bioremoval rate revealed zero-order in 8 h. Exiguobacterium sp. GS1 grew and significantly reduced Cr(VI) in cultures containing 1–9% salt indicating high salt tolerance. Similarly the isolate substantially reduced Cr(VI) over a wide range of temperature (18–45  °C) and initial pH (6.0–9.0). The T opt and initial pHopt were 35–40  °C and 7–8, respectively. Exiguobacterium sp. GS1 displayed a great potential for bioremediation of Cr(VI) in diverse complex environments.  相似文献   

11.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

12.
Luo H  Huang H  Yang P  Wang Y  Yuan T  Wu N  Yao B  Fan Y 《Current microbiology》2007,55(3):185-192
A novel phytase gene appA, with upstream and downstream sequences from Citrobacter amalonaticus CGMCC 1696, was cloned by degenerate polymerase chain reaction (PCR), and thermal asymmetric interlaced (TAIL) PCR and was overexpressed in Pichia pastoris. Sequence analysis revealed one open reading frame that consisted of 1311 bp encoding a 436–amino-acid protein, which had a deduced molecular mass of 46.3 kDa. The phytase appA belongs to the histidine acid phosphatase family and exhibits the highest identity (70.1%) with C. braakii phytase. The gene was overexpressed in P. pastoris. The secretion yield of recombinant appA protein was accumulated to approximately 4.2 mg·mL−1, and the enzyme activity level reached 15,000 U·mL−1, which is higher than any previous reports. r-appA was glycosylated, as shown by Endo H treatment. r-appA was purified and characterized. The specific activity of r-appA for sodium phytate was 3548 U·mg−1. The optimum pH and temperature for enzyme activity were 4.5 and 55°C, respectively. r-appA was highly resistant to pepsin or trypsin treatment. This enzyme could be an economic and efficient alternative to the phytases currently used in the feed industry.  相似文献   

13.
Cyclodextrin glycosyltransferase (CGTase; E.C. 2.4.1.19) is an industrially important enzyme, which is used to produce cyclodextrins (CDs). In this research, we report the use of experimental factorial design to find the best conditions of pH and temperature for CGTase production by Bacillus circulans var. alkalophilus. The optimized calculated values for the tested variables were, respectively, pH 9.7 and temperature 36oC, with a CGTase activity of 615 U mL−1. The CGTase production was further studied with the optimized process parameters on submerged cultivations (SC) and solid-state cultivations (SSC) using soybean industrial fibrous residue (SIFR). The maximum CGTase activity obtained on SC was 1,155 U mL−1 under aerobic conditions. Cell growth and CGTase synthesis in SSC using SIFR as substrate was excellent, with CGTase activity of 32,776 U g(SIFR) −1. These results strongly support the use of SIFR for CGTase production since it is a non-expensive residue.  相似文献   

14.
Summary Axillary and terminal buds from suckers of Ananas comosus cv. Phuket were established on Murashige and Tucker-based (MT) medium with 2.0 mgl−1 (9.8 μM) indolebutyric acid, 2.0 mgl−1 (10.74 μM) naphthaleneacetic acid, and 2.0 mgl−1 (9.29 μM) kinetin, followed by multiplication on Murashige and Skoog-based (MS) medium containing 2.0 mgl−1 (8.87 μM) benzyladenine (BA) to provide a continuous supply of axenic shoots. Leaves, excised from such cultured shoots, produced adventitious shoots from their bases when these explants were cultured on MS medium containing 0.5 mgl−1 (2.26 μM) 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 mgl−1 (8.87 μM) BA. Embryogenic callus was produced when leaf explants were cultured on MS medium with 3.0 mgl−1 (12.42 μM) 4-amino-3,5,6-trichloropicolinic acid (picloram). Somatic embryos developed into shoots following transfer of embryogenic tissues to MS medium with 1.0 mgl−1 (4.44 μM) BA. Cell suspensions, initiated by transfer of embryogenic callus to liquid MS medium with 1.0 mgl−1 (4.14 μM) picloram or 1.0 mgl−1 (4.52 μM) 2,4-D, also regenerated shoots by somatic embryogenesis, on transfer of cells to semisolid MS medium with 1.0 mgl−1 (4.44 μM) BA. All regenerated shoots rooted on growth regulator-free MS medium, prior to ex vitro acclimation and transfer to the glasshouse. These studies provide a baseline for propagation, conservation, and genetic manipulation of elite pineapple germplasms.  相似文献   

15.
The organophosphorous insecticide acephate was tested for its ability to induce in vitro cytogenetic effect in human peripheral lymphocytes by using the chromosomal aberrations (CAs), sister chromatid exchange (SCE) and micronuclei (MN) assay. The level of nuclear DNA damage of acephate was evaluated by using the comet assay. Concentrations of 12.5, 25, 50, 100 and 200 μg mL−1 of acephate were used. All concentrations of acephate induced significant increase in the frequency of CAs and in the formation of MN dose dependently (r = 0.92 at 24 h, r = 0.95 at 48 h for CAs, r = 0.87 for MN). A significant increase was observed in induction of SCE at 50, 100 and 200 μg mL−1 concentrations during 24 h treatment and at all concentrations (except 12.5 μg mL−1) during 48 h treatment period in a dose-dependent manner (r = 0.84 at 24 h, r = 0.88 at 48 h). Acephate did not affect the replicative index and cytokinesis-block proliferation index (CBPI). However, it significantly decreased the mitotic index at all three highest concentrations (50, 100, 200 μg mL−1) for 24 h treatment and at all concentrations (except 12.5 μg mL−1) for 48 h treatment, dose-dependently (r = 0.94 at 24 h, r = 0.92 at 48 h). A significant increase in mean comet tail length was observed at 100 and 200 μg mL−1 concentrations compared with negative control in a concentration-dependent manner (r = 0.94). The mean comet tail intensity was significantly increased at only 200 μg mL−1 concentration. The present results indicate that acephate is a clastogenic, cytotoxic agent and it causes DNA damage at high concentrations in human lymphocytes in culture.  相似文献   

16.
The present study describes a system for efficient plant regeneration via organogenesis and somatic embryogenesis of safflower (Carthamus tinctorius L.) cv. NARI-6 in fungal culture filtrates (FCF)-treated cultures. FCF was prepared by culturing Alternaria carthami fungal mycelia in selection medium for host-specific toxin production. Cotyledon explants cultured on callus induction medium with different levels of FCF (10–50%) produced embryogenic callus. In organogenesis, 42.2% microshoots formed directly from embryogenic callus tissues in plant regeneration medium with 40% FCF. Isolated embryogenic callus cultured on embryo induction medium containing 40% FCF induced 50.2% somatic embryogenesis. Embryo germination percentage was decreased from 64.5 to 28 in embryo maturation medium containing 40% FCF. However, nine plantlets from organogenesis and 24 plantlets from somatic embryogenesis were selected as FCF-tolerant. Alternaria carthami fungal spores (5 × 105 spores/ml) sprayed on the leaves of FCF-tolerant plants showed enhanced survival rate over control plants, which plants were more susceptible to fungal attack. The number of leaf spot lesions per leaf was decreased from 3.4 to 0.9 and their lesion length was also reduced from 2.9 to 0.7 mm in organogenic derived FCF-tolerant plants over control. In somatic embryo derived FCF-tolerant plants, the number of lesions was decreased from 3.1 to 0.4 and the lesion size was also reduced to 2.7–0.5 mm when compared to the control. This study also examined antioxidant enzyme activity in FCF-tolerant plants. Catalase (CAT) activity was slightly decreased whereas peroxidase (POD) activity was increased to a maximum of 42% (0.19 μmol min−1 mg−1 protein) from organogenesis and 47% (0.23 μmol min−1 mg−1 protein) from embryogenesis in FCF-tolerant plants. Superoxide dismutase (SOD) activity was also increased to 17% (149 U mg−1 protein) and 19.5% (145 U mg−1 protein) in FCF-tolerant plants derived from organogenesis and somatic embryogenesis when compared with control plants.  相似文献   

17.
Polysaccharides isolated from Phellinus baumii (PBP) significantly enhanced both lipopolysaccharide (LPS)-induced B lymphocyte proliferation and concanavalin A (Con A)-induced T lymphocyte proliferation. However, PBP (12.5–100 μg ml−1) significantly suppressed the LPS-induced nitric oxide (NO) production in RAW264.7 cells in a concentration-dependent manner. The maximal inhibition of PBP on NO production was 37.5% at 100 μg ml−1. These results provide useful in vitro information to explain the immunostimulating activity and anti-inflammatory activity of PBP.  相似文献   

18.
The Frankia strains TtI 11 and TtI 12 isolated from T. trinervis Miers were characterized regarding their carbon source utilization, intrinsic antibiotic resistance, infectivity, and effectivity on the original host. Both strains grew on BAP medium supplemented with glucose, maltose, and sucrose, but differed in their ability to use other carbon sources such as propionate, pyruvate, acetate, succinate, citrate, and mannitol. The isolates were sensitive to five of the twelve antibiotics tested at 1 μg mL−1 concentration: chloramphenicol, tobramycin, eritromycin, streptomycin, and rifampicin. They exhibited a variable degree of resistance at 1 μg mL−1 concentraction to penicillin G, 4-fluorouracil, oleandomycin, and lincomycin. Both isolates were able to infect and nodulate the original host plant, and thus represent the first reported infective and effective microsymbionts for T. trinervis Miers, a rhamnaceous actinorhizal host. R O D Dixon Section editor  相似文献   

19.
Xanthomonas campestris pv phaseoli produced an extracellular endoinulinase (9.24 ± 0.03 U mL−1) in an optimized medium comprising of 3% sucrose and 2.5% tryptone. X. campestris pv. phaseoli was further subjected to ethylmethanesulfonate mutagenesis and the resulting mutant, X. campestris pv. phaseoli KM 24 demonstrated inulinase production of 22.09 ± 0.03 U mL−1 after 18 h, which was 2.4-fold higher than that of the wild type. Inulinase production by this mutant was scaled up using sucrose as a carbon source in a 5-L fermenter yielding maximum volumetric (21,865 U L−1 h−1) and specific (119,025 U g−1 h−1) productivities of inulinase after 18 h with an inulinase/invertase ratio of 2.6. A maximum FOS production of 11.9 g L−1 h−1 and specific productivity of 72 g g−1 h−1 FOS from inulin were observed in a fermenter, when the mutant was grown on medium containing 3% inulin and 2.5% tryptone. The detection of mono- and oligosaccharides in inulin hydrolysates by TLC analysis indicated the presence of an endoinulinase. This mutant has potential for large-scale production of inulinase and fructooligosaccharides.  相似文献   

20.
Cell suspension cultures of Commiphora wightii, grown in modified MS medium containing 2,4-dichlorophenoxyacetic acid (0.5 mg l−1) and kinetin (0.25 mg l−1), produced ∼5 μg guggulsterone g−1 dry wt. In a 2 l stirred tank bioreactor, the biomass was 5.5 g l−1 and total guggulsterone was 36 μg l−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号