首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
李晓晖  萧敬豪  王建军  吴婕  龙闹 《生态学报》2022,42(3):1192-1202
生态修复是国土空间治理的重要内容。做好生态受损、功能退化地区的辨识并因地施策,是科学编制国土空间规划、实施生态修复重大工程的优先任务。基于自然资源资产评估方法,探索提出一种面向生态保护与修复规划的应用路径。在自然资源资产理念与方法评估辨析基础上,以广州为例,构建在地化的自然资源实物核算、生态系统服务功能价值评估框架,开展生态修复空间辨识,提出空间规划应对策略。主要研究结论:(1)2009年广州市自然资源资产总值约8334亿元,2019年为12025亿元;(2)自然资源资产价值总体呈上升趋势;剔除价格上涨因素后,调节与支持服务价值有所下降,生态保护与修复工作仍待强化;(3)提出自然资源资产评估在国土空间规划生态重要性地区识别、生态空间主导功能分区、生态治理重点研判等规划应用。最后,就如何提高自然资源资产评估的合理性与准确性,自然资源资产评估方法在不同层次国土空间生态修复规划中的适应性,如何基于自然资产评估推动生态修复规划实施等方面进行了讨论。  相似文献   

3.
The clearing of natural vegetation for agriculture has reduced the capacity of natural systems to provide ecosystem functions. Ecological restoration can restore desirable ecosystem functions, such as creating habitat for animal conservation and carbon sequestration as woody biomass. In order to maintain these beneficial ecosystem functions, restoration projects need to mature into self‐perpetuating communities. Here we compared the ecological attributes of two types of restoration, “active” tree plantings with “passive” natural forest regeneration (“natural regrowth”) to existing remnant vegetation in a cleared agricultural landscape. Specifically, we measured differences between forest categories in factors that may predict future restoration failure or ecosystem collapse: aboveground plant biomass and biomass accrual over time (for regrowing stands), plant density and size class distributions, and diversity of functional groups based on seed dispersal and growth strategy traits. We found that natural regrowth and planted forests were similar in many ecological characteristics, including biomass accrual. Despite this, planted stands contained fewer tree recruit and shrub individuals, which may be due to limited recruitment in plantings. If this continues, these forests may be at risk of collapsing into nonforest states after mature trees senesce. Lower shrub density and richness of mid‐story trees may lead to lower structural complexity in planting plots, and alongside lower richness of fleshy‐fruited plant species may reduce animal resources and animal use of the restored stand. In our study region, natural regrowth may result in restored woodland communities with greater conservation and carbon mitigation value.  相似文献   

4.
Ecological Theory and Community Restoration Ecology   总被引:18,自引:0,他引:18  
Community ecological theory may play an important role in the development of a science of restoration ecology. Not only will the practice of restoration benefit from an increased focus on theory, but basic research in community ecology will also benefit. We pose several major thematic questions that are relevant to restoration from the perspective of community ecological theory and, for each, identify specific areas that are in critical need of further research to advance the science of restoration ecology. We ask, what are appropriate restoration endpoints from a community ecology perspective? The problem of measuring restoration at the community level, particularly given the high amount of variability inherent in most natural communities, is not easy, and may require a focus on restoration of community function (e.g., trophic structure) rather than a focus on the restoration of particular species. We ask, what are the benefits and limitations of using species composition or biodiversity measures as endpoints in restoration ecology? Since reestablishing all native species may rarely be possible, research is needed on the relationship between species richness and community stability of restored sites and on functional redundancy among species in regional colonist “pools.” Efforts targeted at restoring system function must take into account the role of individual species, particularly if some species play a disproportionate role in processing material or are strong interactors. We ask, is restoration of habitat a sufficient approach to reestablish species and function? Many untested assumptions concerning the relationship between physical habitat structure and restoration ecology are being made in practical restoration efforts. We need rigorous testing of these assumptions, particularly to determine how generally they apply to different taxa and habitats. We ask, to what extent can empirical and theoretical work on community succession and dispersal contribute to restoration ecology? We distinguish systems in which succession theory may be broadly applicable from those in which it is probably not. If community development is highly predictable, it may be feasible to manipulate natural succession processes to accelerate restoration. We close by stressing that the science of restoration ecology is so intertwined with basic ecological theory that practical restoration efforts should rely heavily on what is known from theoretical and empirical research on how communities develop and are structured over time.  相似文献   

5.
繁殖体与微生境在退化草地恢复中的作用   总被引:8,自引:0,他引:8  
退化草地的成功恢复主要依赖于种子和母株无性繁殖幼苗的有效建植 ,即草地群落中可利用繁殖体是退化草地得以恢复的内在条件。此外 ,群落中那些提供种子发芽、幼苗生长发育的适宜微生境 (safe sites/ suitable microsites) ,构成了退化草地恢复的外在条件。由于严重退化草地群落缺乏可利用繁殖体和供繁殖体生长发育的适宜微生境 ,使得退化草地恢复受到很大限制 ,因而 ,同时满足繁殖体与微生境是退化草地恢复的先决条件。人为提供繁殖体和适宜微生境可以在很大程度上提高退化草地的恢复速度 ,即在缺乏繁殖体草地群落供给繁殖体 ,或者在缺乏微生境的草地群落中创造适宜微生境。不同植物种群建植需要的环境存在着显著差异 ,因此在人工恢复草地群落过程中 ,对这些植物的繁殖体和繁殖体着床环境给予特殊处理是必需的 ,使之同时满足多种植物种群建植需求。对退化草地植物繁殖体、微生境的重要性及其涵义进行讨论  相似文献   

6.
山水林田湖草生态保护修复工程是国家为了实现自然资源整体保护、系统修复和综合治理,在全国范围内组织实施的重大工程。生态资产和生态系统生产总值(Gross Ecosystem Product, GEP)是评估生态保护效益的两项重要指标,能够客观反映修复工程对区域范围内生态系统状况的改善情况。以江西省赣州市为例,通过核算赣州市、工程区和非工程区的生态资产和GEP,并对比分析其核算结果,以探究山水林田湖草修复工程的生态保护效益,并对影响工程区内外GEP变化的主要因素进行分析,以从不同角度有效保护生态环境,为生态保护修复工程效益的长期发挥提供科学依据。结果如下:(1)生态资产方面,赣州市自然生态系统面积增加,生态系统质量整体趋于好转,生态资产综合指数上升了12.89%。其中,工程区自然生态系统面积增幅最大,为3.23%;非工程区生态系统质量提升最大,生物量和植被覆盖度分别提升了12.93%和2.08%。(2)GEP方面,赣州市GEP呈增长趋势。2015—2019年,赣州市、工程区和非工程区GEP分别增加了142.10、7.58、134.52亿元,增幅分别为1.38%、3.90%、1.33%。(3...  相似文献   

7.
The global push to achieve ecosystem restoration targets has resulted in an increased demand for native seeds that current production systems are not able to fulfill. In many countries, seeds used in ecological restoration are often sourced from natural populations. Though providing seed that is reflective of the genetic diversity of a species, wild harvesting often cannot meet the demands for large‐scale restoration and may also result in depletion of native seed resources through over harvesting. To improve seed production and decrease seed costs, seed production systems have been established in several countries to generate native seeds based on agricultural or horticultural production methods or by managing natural populations. However, there is a need to expand these production systems which have a primary focus on herbaceous species to also include slower maturing shrub and tree seed. Here we propose that to reduce the threat of overharvest on the viability of natural populations, seed collection from natural populations should be replaced or supplemented by seed production systems. This overview of seed production systems demonstrates how to maximize production and minimize unintended selection bias so that native seed batches maintain genetic diversity and adaptability to underpin the success of ecological restoration programs.  相似文献   

8.
9.
基于生境等价分析法的胶州湾围填海造地生态损害评估   总被引:3,自引:0,他引:3  
李京梅  刘铁鹰 《生态学报》2012,32(22):7146-7155
围填海造地的生态损害是指围填海造地所引致的海洋生态系统服务功能的下降,包括生物资源消失、生态调节功能减弱以及生物栖息地破坏等。针对胶州湾围填海造地规模及其生态影响,使用生境等价分析法,对围填海造地的资源和生态服务功能的受损程度和补偿规模进行了评估。结果表明,1988-2005年胶州湾填海造地的资源生态受损程度为41.33%,以退田还海作为修复工程,修复期为8a,在5%的折现率水平下,修复工程的规模应为22.47 km2,才能使被填海域的生态服务功能恢复到初始水平。这一结论可作为地方政府对胶州湾围填海造地实施生态修复建设和生态补偿管理的技术依据。  相似文献   

10.
Tropical rainforests have been disappearing at an alarming rate. In addition to preserving remaining tropical rainforests, we need to convert degraded and abandoned pasturelands into secondary forests. To accelerate this, human intervention in the recovery process is essential. In this review paper we (i) encapsulate some of the problems, which might surface when converting abandoned land to secondary forest. (ii) Look at some of the restoration techniques used in restoration programs and propose additional techniques for consideration. Major barriers to natural regeneration on abandoned and degraded pasturelands are: weed infestation, lack of indigenous soil seed bank, lack of seed supply/movement, soil compaction, depletion of soil nutrients and unsuitable microclimate and microhabitat. Although several restoration techniques have been recommended, most restoration programs have been carried out using native seedling transplants to accelerate natural recruitment. Most restoration groups in the tropics are still in the initial stages of determining which species or species combination to chose to gain maximum benefit. On the other hand restoration ecologists are struggling to detect which techniques are most appropriate to restore degraded and abandoned pasturelands. Our review shows that there is immediate need for further research and development on restoration techniques by examining the ecological and economic effectiveness of: direct seeding, stem cuttings using native pioneer or climax species and simple manipulation such as displacing branches of pioneer species with mature seeds on abandoned and degraded pasturelands and artificial perching to accelerate natural regeneration. These techniques are essential to successfully heal the wound humans have inflicted on the most spectacular and species-rich ecosystems on earth.  相似文献   

11.
Growing interest in ecosystem restoration has recently turned the focus on tree planting, one of the most widely used restoration tools globally. Here, we study the restoration potential of tree planting in a cool-temperate forest in Shiretoko National Park, northern Japan. We used simulation modeling to investigate the long-term success of tree planting in restoring biodiversity and the climate change mitigation function relative to intact natural forests. Specifically, we investigated 31 different restoration scenarios, consisting of five planting densities (1,000–10,000 trees/ha) × six levels of planted tree species richness (one to six species) + one no-planting scenario. We examined these scenarios at different distances from natural forests serving as a seed source (0–300 m) to quantify the potential for natural regeneration. In restoration areas in close proximity to a natural forest, species-rich high-density planting scenario performed best, reaching >50% of the reference values from intact natural forests within 33 years for both restoration goals. However, variation in restoration outcomes was small when >2,500 trees/ha of more than four species were planted, regardless of distance to seed source. In contrast, biodiversity restoration was considerably delayed in scenarios where planted species richness was low as well as in restoration areas that were far from a seed source yet relied solely on natural regeneration. We here demonstrate how forest landscape simulation can be used to identify viable restoration options for managers across multiple restoration goals as an important step to bridge the research–implementation gap in forest restoration.  相似文献   

12.
Degradation of groundwater-dependent ecosystems has raised a need for their restoration, but ecological responses to restoration are largely unknown. We evaluated the effectiveness of spring restoration using data from near-natural, restored, and human-impacted springs, the major impact being degradation of spring hydrology by forest drainage. We used both taxonomic (bryophytes, macroinvertebrates, and leaf-decomposing fungi) and functional (leaf breakdown) measures of restoration success. We expected that by reducing surface water input, restoration will improve spring hydrology and place spring ecosystems in a trajectory towards more natural conditions. Restored springs were thermally more stable than impacted springs and the contribution of surface water was greatly reduced. Bryophytes were more abundant in restored than in impacted springs but did not differ among restored and natural springs. Similarly, macroinvertebrate communities differed between restored and impacted springs whereas no difference was detected between restored and natural sites. Species diversity and functional attributes showed weaker responses to restoration. Our results suggest that restoration enhances spring habitat quality, and the first signs of biodiversity enhancement were also detectable only a few years post-restoration. Restoration clearly bears great promise as a conservation tool for the protection of this valuable component of regional freshwater biodiversity.  相似文献   

13.
1. Peatlands have suffered great losses following drainage for agriculture, forestry, urbanisation, or peat mining, near inhabited areas. We evaluated the faunal and vegetation patterns after restoration of a peatland formerly mined for peat. We assessed whether bog pools created during restoration are similar to natural bog pools in terms of water chemistry, vegetation structure and composition, as well as amphibian and arthropod occurrence patterns. 2. Both avian species richness and peatland vegetation cover at the site increased following restoration. Within bog pools, however, the vegetation composition differed between natural and man‐made pools. The cover of low shrubs, Sphagnum moss, submerged, emergent and floating vegetation in man‐made pools was lower than in natural pools, whereas pH was higher than in typical bog pools. Dominant plant species also differed between man‐made and natural pools. 3. Amphibian tadpoles, juveniles and adults occurred more often in man‐made pools than natural bog pools. Although some arthropods, including Coleoptera bog specialists, readily colonised the pools, their abundance was two to 26 times lower than in natural bog pools. Plant introduction in bog pools, at the stocking densities we applied, had no effect on the occurrence of most groups. 4. We conclude that our restoration efforts were partially successful. Peatland‐wide vegetation patterns following restoration mimicked those of natural peatlands, but 4 years were not sufficient for man‐made pools to fully emulate the characteristics of natural bog pools.  相似文献   

14.
Natural wetland ecosystems continue to suffer widespread destruction and degradation. Many recent studies argue that artificial or restored wetlands compensate for wetland loss and are valuable for waterbird conservation. However, detailed comparisons of the value of natural, artificial and restored wetlands are lacking. Our aim was to assess if the restoration or creation of wetlands can fully compensate for the loss of natural wetlands for waterbirds. We compared the waterbird communities in a set of 20 natural, restored and artificial wetlands, all of which are considered important for waterbirds and are located within the same protected area (Doñana Natural Space, south‐west Spain). We used different measures of diversity, including phylogenetic relatedness, and the proportion of threatened species at national, European and international levels. We found that artificial wetlands have consistently lower value than restored and natural wetlands, with little difference between the latter two. Natural wetlands are essential for conserving diversity across the tree of life and for threatened species, but restored wetlands can be of similar value and can assure maintenance of key ecological processes. Thus, when economic costs per unit area are similar, resources for wetland conservation are better invested in restoration projects than in wetland creation, and caution is required when suggesting that artificial wetlands compensate for the loss of natural wetlands.  相似文献   

15.
Several Federal statutes provide the government the authority to recover natural resource damages including the Clean Water Act Amendments (1977), the Outer Continental Shelf Act Amendments (1978), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, and the Oil Pollution Act of 1990 (OPA 90). CERCLA and OPA 90 are the principle Federal statutes which authorize trustees to assess damages for trust resources which are lost, injured, or destroyed as a result of the discharge of oil or the release of hazardous substances. The Department of the Interior was charged with developing natural resource damage assessment (NRDA) regulations and procedures from CERCLA and the Department of Commerce, National Oceanic and Atmospheric Administration (NOAA) was charged with developing regulations for OPA 90. NRDA is a process for making the public “whole” for direct injury to natural resources and/or the services of natural resources. The primary objectives of the NRDA process are to identify and quantify natural resource injury, determine the damages resulting from the injury, and develop and implement appropriate restoration actions. The goal is to be accomplished by implementing a plan for the restoration, rehabilitation, replacement, or acquisition of equivalent natural resources. NRDA is an after-the-fact process; however, the OPA 90 NRDA rules describe a pre-spill planning process. The models and formulae can be used in this pre-spill planning process to estimate damages (both ecological and economic). Some of those tools, in particular NRDAMCME, have uses in ranking risk from spills of petroleum products and hazardous substances. This information can be used to protect ecological resources and lower NRDA costs through pre spill planning and management of resources during a spill.  相似文献   

16.
Methods used in the restoration of lowland heath vary depending on edaphic factors at a site and need for introduction of ericaceous propagules. This study investigates the effect of some methods on growth of an important ericaceous species, Heather (Calluna vulgaris). It also explores whether success of growth of C. vulgaris in restoration schemes is affected by its degree of colonization by ericoid mycorrhizal fungi (ERM). The success of Heather growth was compared at three sites, a control area of natural heathland and two restoration sites. These were a quarry where soil had been translocated but not chemically manipulated and a site on agricultural land where the top soil had been improved but then either stripped away or acidified prior to attempting heathland restoration. Propagules of C. vulgaris were applied either as turves or as clippings. Results show that clippings produced as dense a cover of C. vulgaris as turves over a period of 13 years and that plants in such swards can exhibit a degree of ERM colonization comparable to that found in mature plants growing in natural heathland. Young (<2 years of age) plants of C. vulgaris had less extensive mycorrhizal colonization of their roots, particularly when growing on restored agricultural soils. A relationship was found between lower levels of mycorrhizal colonization and smaller aboveground plant growth. Success of heathland restoration may be improved by finding means to enhance the rate and extent of mycorrhizal colonization of young C. vulgaris growing in a restoration environment.  相似文献   

17.
18.
Seagrass meadows are habitat for an abundance and diversity of animal life, and their continuing global loss has focused effort on their restoration. This restoration not only aims to re‐establish the structure of the seagrass, but also to restore its function, particularly as habitat. The success of seagrass restoration is typically measured by the recovery of aboveground structure, but this ignores the important role of the belowground component of seagrass ecosystems, which may not recover at the same rate, and is equally important for faunal communities. We quantify infaunal communities (abundance, richness, and composition) within expanding plots of restored seagrass, and relate their change to the recovery of belowground seagrass biomass and sediment properties. We found that infaunal abundance and composition converged on that found in natural seagrass within 2 years, while the overall infaunal richness was not affected by habitat. The carbon content of surface sediments also recovered within 2 years, although recovery of belowground biomass and sediment grain size took 4 to 6 years. These results suggest that the structure of recovering seagrass habitats may not need to attain that of natural meadows before they support infauna that is comparable to natural communities. This pace and effectiveness of recovery provides some optimism for future seagrass restoration.  相似文献   

19.
Large‐scale and long‐term restoration efforts are urgently needed to reverse historical global trends of deforestation and forest degradation in the tropics. Restoration of forests within landscapes offers multiple social, economic, and environmental benefits that enhance lives of local people, mitigate effects of climate change, increase food security, and safeguard soil and water resources. Despite rapidly growing knowledge regarding the extent and feasibility of natural regeneration and the environmental and economic benefits of naturally regenerating forests in the tropics, tree planting remains the major focus of restoration programs. Natural regeneration is often ignored as a viable land‐use option. Here, we assemble a set of 16 original papers that provide an overview of the ecological, economic, and social dimensions of forest and landscape restoration (FLR), a relatively new approach to forest restoration that aims to regain ecological integrity and enhance human well‐being in deforested or degraded forest landscapes. The papers describe how spontaneous (passive) and assisted natural regeneration can contribute to achieving multiple social and ecological benefits. Forest and landscape restoration is centered on the people who live and work in the landscape and whose livelihoods will benefit and diversify through restoration activities inside and outside of farms. Given the scale of degraded forestland and the need to mitigate climate change and meet human development needs in the tropics, harnessing the potential of natural regeneration will play an essential role in achieving the ambitious goals that motivate global restoration initiatives.  相似文献   

20.
In many developing countries, the only affordable approach to recover ecosystem structure and function is through passive restoration. We conducted a 3 year study of passive restoration in mixed Dipterocarp forests dominated by Shorea robusta to examine the effectiveness of exclusion (fencing and fire suppression) on diversity, density, and richness of regenerating tree seedlings and saplings. We analyzed excluded and disturbed paired sites. We observed exclusion was effective in increasing seedling richness and occurrence of S. robusta and Syzygium cumini. A significant improvement in sapling strata (diversity, density, and richness) from excluding the disturbances was observed. Mean sapling density estimated was about 500% higher in excluded compared to disturbed sites. Probability of occurrence of S. robusta and Dalbergia latifolia saplings increased due to exclusion. That said, presence of exotic species Chromolaena odorata was higher in excluded sites reflecting the need for assisted natural regeneration in forests. This study has demonstrated passive restoration as an effective approach for improving natural regeneration in mixed Dipterocarp forest ecosystems and possibly other similar forest types, and will serve as a reference document for future restoration interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号