共查询到20条相似文献,搜索用时 15 毫秒
1.
Jean-Louis Schwartz Line Garneau Diane Savaria Luke Masson Roland Brousseau Eric Rousseau 《The Journal of membrane biology》1993,132(1):53-62
Summary Previous studies in our laboratory have shown that CryIC, a lepidopteran-specific toxin from Bacillus thuringiensis, triggers calcium and chloride channel activity in SF-9 cells (Spodoptera frugiperda, fall armyworm). Chloride currents were also observed in SF-9 membrane patches upon addition of CryIC toxin to the cytoplasmic side of the membrane. In the present study the ability of activated CryIC toxin to form channels was investigated in a receptor-free, artificial phospholipid membrane system. We demonstrate that this toxin can partition in planar lipid bilayers and form ion-selective channels with a large range of conductances. These channels display complex activity patterns, often possess subconducting states and are selective to either anions or cations. These properties appeared to be pH dependent. At pH 9.5, cation-selective channels of 100 to 200 pS were most frequently observed. Among the channels recorded at pH 6.0, a 25–35 pS anion-selective channel was often seen at pH 6.0, with permeation and kinetic properties similar to those of the channels previously observed in cultured lepidopteran cells under comparable pH environment and for the same CryIC toxin doses. We conclude that insertion of CryIC toxin in SF-9 cell native membranes and in artificial planar phospholipid bilayers may result from an identical lipid-protein interaction mechanism.The assistance of A. Mazza and G.A.R. Mealing is gratefully acknowledged. The trypsin-activated, HPLC-purified CryIC toxin isolated from B. thuringiensis var. entomocidus crystal was a kind gift from M. Pusztai, Institute for Biological Sciences, NRC, Ottawa. 相似文献
2.
Changes in physico-chemical properties of dimyristoyl phosphatidylcholine (DMPC) lipid bilayers caused by the addition of 9.4 mol% nonionic surfactant decaoxyethylene monododecyl ethers (C12E10) have been investigated by molecular dynamics calculations. In spite of addition of single chain C12E10, the lipid bilayers showed an increase of membrane area. Isothermal area compressibility, which is a measure of membrane softness in lateral direction, also increased by 50% for DMPC/C12E10 mixed bilayers. Furthermore, the order parameter of C–H vector for DMPC acyl tails decreased. We found that these changes are caused by the hydrophilic head groups of C12E10 which are located near the glycerol backbone of the DMPC molecules and have bulky random coil conformation without any preferential ordered structures. 相似文献
3.
Sporidesmin, a mycotoxin fromPithomyces chartarum is a hydrophobic molecule. It can therefore be easily incorporated in the cell membrane, where it is likely to cause changes in the bilayer organization and the properties of membrane proteins. In order to understand the redox behaviour of sporidesmin in a hydrophobic environment, we have investigated the effects of oxidized and reduced sporidesmin on the phase transition properties of bilayers and on the susceptibility of bilayers to pancreatic phospholipase A2 (PLA2). The changes induced by sporidesmin in the thermotropic phase transition profiles of dimyristoyl-sn-3-phosphatidyl choline (DMPC) bilayers were similar to those caused by solutes known to localize in the glycerol-backbone region of the lipid bilayer, suggesting a similar localization for oxidized and reduced sporidesmin. Neither form of toxin disrupt the bilayer or membrane organization even at relatively high mole fractions. At concentrations <10 mole% both forms partitioned equally well in the gel and liquid-crystalline phases, whereas at higher concentrations (30 mole%) reduced sporidesmin is preferentially localized in the liquid-crystalline phase. These effects of sporidesmin on the phase properties of DMPC vesicles were also reported by the fluorescence behavior of 10-pyrenedecanoic acid (PDA). The effects of oxidized and reduced sporidesmins on PLA2 kinetics are consistent with their ability to perturb bilayer organisation. 相似文献
4.
The ternary lipid system palmitoylsphingomyelin (PSM)/palmitoyloleoylphosphatidylcholine (POPC)/cholesterol is a model for lipid rafts. Previously the phase diagram for that mixture was obtained, establishing the composition and boundaries for lipid rafts. In the present work, this system is further studied in order to characterize the size of the rafts. For this purpose, a time-resolved fluorescence resonance energy transfer (FRET) methodology, previously applied with success to a well-characterized phosphatidylcholine/cholesterol binary system, is used. It is concluded that: (1) the rafts on the low raft fraction of the raft region are small (below 20 nm), whereas on the other side the domains are larger; (2) on the large domain region, the domains reach larger sizes in the ternary system (> approximately 75-100 nm) than in binary systems phosphatidylcholine/cholesterol (between approximately 20 and approximately 75-100 nm); (3) the raft marker ganglioside G(M1) in small amounts (and excess cholera toxin subunit B) does not affect the general phase behaviour of the lipid system, but can increase the size of the rafts on the small to intermediate domain region. In summary, lipid-lipid interactions alone can originate lipid rafts on very different length scales. The conclusions presented here are consistent with the literature concerning both model systems and cell membrane studies. 相似文献
5.
6.
New fluorophore-labelled GM1 gangliosides have been synthesised and spectroscopically characterised. Spectroscopically different BODIPY groups were covalently linked, specifically to either the polar or the hydrophobic part of the ganglioside molecule. The absorption and fluorescence spectroscopic properties are reported for 564/571-BODIPY- and 581/591-BODIPY-labelled GM1. Each of the different BODIPY groups is highly fluorescent and depolarisation experiments provide molecular information about the spatial distribution in lipid bilayers, as well as order and dynamics. From experiments performed on two spectroscopically different BODIPY:s, specific interactions can be revealed by monitoring the rate/efficiency of donor-acceptor electronic energy transfer. Systems of particular interest for applying these probes are e.g. mixtures of lipids, and peptides/proteins interacting with lipid membranes. 相似文献
7.
Adam W. Dalziel Gert Lipka Babur Z. Chowdhry Julian M. Sturtevant David E. Schafer 《Molecular and cellular biochemistry》1984,63(1):83-91
Summary The B, or binding, subunit of cholera enterotoxin forms a pentameric ring structure in the intact toxin, and also when the subunit is isolated from the A subunit. The thermal denaturation of the B subunit ring was examined by differential scanning calorimetry in the presence and absence of ganglioside GM1, its natural receptor. In the absence of ganglioside an irreversible endotherm was observed with maximal excess apparent heat capacity, Cmax, at 74.6° C. When the ganglioside was added in increasing amounts, multiple transitions were observed at higher temperatures, the most prominent having a Cmax at 90.8° C. At high ganglioside concentrations, the 74.6° C transition was not observed. In addition to the thermodynamic results a model is proposed for the interaction of GM1 and B subunit pentamer. This model is derived independently of the calorimetric results (but is consistent with such data) and is based upon considerations of the geometry of the GM1 micelle-B subunit pentamer.Abbreviations Mr
molecular weight in daltons
- GM1
H3Neu-AcGgOse4Cer* = Gall 3Ga1NAc1 4Gal-[3 - 2NeuAc]1 4Glc1 1Cer (asterisked form follows the recommendations of the IUPACIUB Commission on Biochemical Nomenclature, Ref. 3)
- R
molar ratio of GM1 to B monomer
- DSC
differential scanning calorimetry
- Cmax
excess apparent heat capacity
- Cmax
maximal value of Cex
- tm
temperature (° C) at Cex = Cmax
- t1/2
peak width in °C at Cex = Cmax/2
- Hcal
calorimetric enthalpy
- C
p
d
van't Hoff enthalpy
- C
p
d
change in specific heat accompanying denaturation 相似文献
8.
Lu YC Chuang YS Chen YY Shu AC Hsu HY Chang HY Yew TR 《Biosensors & bioelectronics》2008,23(12):1856-1861
Real-time and specific detection of single bacterium remains a fundamental challenge and draws very much attention. Using test patterns composed of interdigitated Au-electrode arrays modified with antibody, the specific and quantitative detection of the electrical conductivity of a single Escherichia coli (E. coli, JM109) has been carried out in this work. The key is to ensure low background current of the antibody-modified test patterns before bacteria detection (<0.7pA in this case) and minimize the residual moisture or hydration after E. coli immobilization, such as via the use of 1-min bake at 50 degrees C prior to electrical measurement. This method holds great potential for future application in the real-time, specific, and quantitative bacterium detection down to a single bacterium cell. 相似文献
9.
Abdulkader F Arcisio-Miranda M Curi R Procopio J 《Journal of biochemical and biophysical methods》2007,70(3):515-518
One of the methods available for the measurement of surface potentials of planar lipid bilayers uses the conductance ratio between a charged and a neutral bilayer doped with ionophores to calculate the surface potential of the charged bilayer. We have devised a simplification of that method which does not require the use of an electrically neutral bilayer as control. The conductance of the charged bilayer is measured before and after the addition of divalent cations (Ba(2+)) to the bathing solution. Ba(2+) ions screen fixed surface charges, decreasing the surface potential. If the membrane is negatively charged the screening has the effect of decreasing the membrane conductance to cations. The resulting conductance ratio is used to calculate the surface potential change, which is fed into an iterative computer program. The program generates pairs of surface potential values and calculates the surface charge density for the two conditions. Since the surface charge density remains constant during this procedure, there is only one pair of surface potentials that satisfies the condition of constant charge density. Applying this method to experimental data from McLaughlin et al. [McLaughlin, S.G.A., Szabo, G. and Eisenman, G., Divalent ions and the surface potential of charged phospholipid membranes, J. Gen. Physiol., 58 (1971) 667-687.] we have found very similar results. We have also successfully used this method to determine the effect of palmitic acid on the surface potential of asolectin membranes. 相似文献
10.
Expression of Cholera Toxin B Subunit in Transgenic Tomato Plants 总被引:25,自引:0,他引:25
11.
Colombrita C Lombardo G Scapagnini G Abraham NG 《Biochemical and biophysical research communications》2003,308(4):1001-1008
Heme oxygenase-1 (HO-1) is a stress protein, which has been suggested to participate in defense mechanisms against agents that may induce oxidative injury, such as angiotensin II (Ang II). The purpose of the present study was to examine the role of human HO-1 in cell-cycle progression. We investigated the effect of Ang II on HO-1 gene expression in serum-deprived media to drive human endothelial cells into G(0)/G(1) (1% FBS) compared to exponentially grown cells (10% FBS). The addition of Ang II (100 ng/ml) to endothelial cells increased HO-1 protein and activity in G(0)/G(1) in a time-dependent manner, reaching a maximum HO-1 level at 16 h. Real-time RT-PCR demonstrated that Ang II increased the levels of HO-1 mRNA in G(0)/G(1) as early as 1 h. The rate of HO-1 induction in response to Ang II was several-fold higher in serum-starved cells compared to cells cultured in continuous 10% FBS. The addition of Ang II increased the generation of 8-epi-isoprostane PGF(2 alpha). Inhibition of HO-1, by Stannis mesoporphyrin (SnMP), potentiated Ang II-mediated DNA damage and generation of 8-epi-isoprostane PGF(2 alpha). These results imply that expression of HO-1 in G(0)/G(1), in the presence of Ang II, may be a key player in attenuating DNA damage during cell-cycle progression. Thus, exposure of endothelial cells to Ang II causes a complex response involving generation of superoxide anion, which may be involved in DNA damage. Upregulation of HO-1 ensures the generation of bilirubin and carbon monoxide (CO) in G(0)/G(1) phase to counteract Ang II-mediated oxidative DNA damage. Inducibility of HO-1 in G(0)/G(1) phase is essential and probably regulated by a complex system involving oxygen species to assure controlled cell growth. 相似文献
12.
Potassium channels from the plasma membrane of rye roots characterized following incorporation into planar lipid bilayers 总被引:5,自引:0,他引:5
Plasma membrane was purified from roots of rye (Secale cereale L. cv. Rheidol) by aqueous-polymer two-phase partitioning and incorporated into planar bilayers of 1-palmitoyl-2-oleoyl phosphatidylethanolamine by stirring with an osmotic gradient. Since plasmamembrane vesicles were predominantly oriented with their cytoplasmic face internal, when fused to the bilayer the cytoplasmic side of channels faced the trans chamber. In asymmetrical (cis:trans) 280100 mM KCl, five distinct K+-selective channels were detected with mean chord-conductances (between +30 and -30 mV; volyages cis with respect to trans) of 500 pS, 194 pS, 49 pS, 21 pS and 10 pS. The frequencies of incorporation of these K+ channels into the bilayer were 48, 21, 50, 10 and 9%, in the order given (data from 159 bilayers). Only the 49 pS channel was characterized further in this paper, but the remarkable diversity of K+ channels found in this preparation is noteworthy and is the subject of further study. In symmetrical KCl solutions, the 49 pS channel exhibited non-ohmic unitary-current/voltage relationships. The chord-conductance (between +30 and-30 mV) of the channel in symmetrical 100 mM KCl was 39 pS. The unitary current was greater at positive voltages than at corresponding negative voltages and showed considerable rectification with increasing positive and negative voltages. This would represent inward rectification in vivo. Gating of the channel was not voltage-dependent and the channel was open for approx. 80% of the time. Presumably this is not the case in vivo, but we are at present uncertain of the in vivo controls of channel gating. The distribution of channel-open times could be approximated by the sum of two negative exponential functions, yielding two open-state time constants (o, the apparent mean lifetime of the channel-open state) of 1.0 ms and 5.7 s. The distribution of channel-closed times was best approximated by the sum of three negative exponential functions, yielding time constants (c, the apparent mean lifetime of the channel-closed state) of 1.1 ms, 51 ms and 11 s. This indicates at least a five-state kinetic model for the activity of the channel. The selectivity of the 49 pS channel, determined from both reversal potentials under biionic conditions (100 mM KCl100 mM cation chloride) and from conductance measurements in symmetrical 100 mM cation chloride, was Rb+ K+ > Cs+ > Na+ > Li+ > tetraethylammonium (TEA+). The 49 pS channel was reversibly inhibited by quinine (1 mM) but TEA+ (10 mM), Ba2+ (3 mM), Ca2+ (1 mM), 4-aminopyridine (1 mM) and charybdotoxin (3 M) were without effect when applied to the extracellular (cis) surface.Abbreviations and Symbols GHK
Goldman-Hodgkin-Katz
- I/V
current/voltage
- PEG
polyethyleneglycol
- Po
probability o f the channel being open
- TEA+
tetraethylammonium
- c
apparent mean lifetime of the channel-closed state
- o
apparent mean lifetime of the channel-open state
P.J.W. was supported by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Professor E.A.C. MacRobbie and M.T. by the Glaxo Junior Research Fellowship at Churchill College, Cambridge. We thank Dr. D.T. Cooke (AFRC, Long Ashton Research Station, University of Bristol, UK) and Ms. J. Marshall (University of York, UK) for their advice and assistance with the aqueous-polymer two-phase partitioning of plasma membrane from rye roots, Mr. J. Banfield and Miss P. Parmar (University of Cambridge, UK) for technical assistance and Professor E.A.C. MacRobbie, Dr. G. Thiel (University of Cambridge, UK), Dr. M.R. Blatt (Wye College, University of London, UK), Dr. D. Sanders and Dr. E. Johannes (University of York, UK) for helpful discussions. 相似文献
13.
The method of sensitized photoinactivation based on the photosensitized damage of gramicidin A (gA) molecules was applied here to study ionic channels formed by minigramicidin (the 11-residue analogue of gramicidin A) in a planar bilayer lipid membrane (BLM) of different thickness. Irradiation of BLM with a single flash of visible light in the presence of a photosensitizer (aluminum phthalocyanine or Rose Bengal) generating singlet oxygen provoked a decrease in the minigramicidin-induced electric current across BLM, the kinetics of which had the characteristic time of several seconds, as observed with gA. For gA, there is good correlation between the characteristic time of photoinactivation and the single-channel lifetime. In contrast to the covalent dimer of gA characterized by extremely long single-channel lifetime and the absence of current relaxation upon flash excitation, the covalent head-to-head dimer of minigramicidin displayed the flash-induced current decrease with the kinetics being strongly dependent on the membrane thickness. The current decrease became slower both upon increasing the concentration of the minigramicidin covalent dimer and upon including cholesterol in the membrane composition. These data in combination with the quadratic dependence of the current on the peptide concentration can be rationalized by hypothesizing that the macroscopic current across BLM measured at high concentrations of the peptide is provided by dimers of minigramicidin covalent dimers in the double β5.7-helical conformation having the lifetime of about 0.4 s, while single channels with the lifetime of 0.01 s, observed at a very low peptide concentration, correspond to the single-stranded β6.3-helical conformation. Alternatively the results can be explained by clustering of channels at high concentrations of the minigramicidin covalent dimer. 相似文献
14.
N. Ya. Gil’yano E. G. Semenova R. F. Fedortseva L. V. Konevega 《Cell and Tissue Biology》2009,3(3):274-282
The functional peculiarities of spontaneously transformed human endothelial ECV304 cell line were studied to estimate its adequacy as an endothelial cell model for studying angiogenesis and signal transduction. The dependence of the proliferative activity of this line on the presence of growth factors was shown. The absence of serum in the nutrition medium leads to the blockage of cells in the G1 phase of cell cycle, which is not characteristic of tumor cell lines. Low doses of beta particles emitted during the decay of the [3H]-thymidine blocked, dose-dependent proliferation of these cells in the G2/M phase. The incubation of the cells in medium with another source of β particles, 3H2O, resulted in the predominant accumulation of cells in the S phase under conditions of equal specific tritium activities. The different efficiency of β particles of tritium as a part of the H2O molecule or thymidine demonstrates that different mechanisms are responsible for different checkpoints. The checkpoint of G1/S is absent, which agrees with the presence of the deletion of chromosome 9 at locus p21. The level of NO produced by the constitutive form of NO synthase in ECV304 cells was relatively low and not modified by inducible NO-synthase inhibitors. The data obtained suggest that the ECV304 line cells retained properties of the initial spontaneously transformed cell line obtained from the human umbilical vein (HUVEC) and can be used as a model system for further studies of properties of the vascular endothelium. 相似文献
15.
16.
Kinetics and thermodynamics of association of a fluorescent lysophospholipid derivative with lipid bilayers in liquid-ordered and liquid-disordered phases
下载免费PDF全文

We have measured the rates of insertion into, desorption from, and spontaneous interlayer translocation (flip-flop) of the fluorescent lysophospholipid derivative NBD-lyso-1-myristoylphosphatidylethanolamine in l(d) and l(o) phase lipid bilayer membranes. The lipid bilayers, studied as LUV, were prepared from pure 1-palmitoyl-2-oleoylphosphatidylcholine, in the l(d) phase; and from two Chol-containing binary lipid mixtures, 1-palmitoyl-2-oleoylphosphatidylcholine and Chol (molar ratio of 1:1) and SpM and Chol (molar ratio of 6:4), both in the l(o) phase. Insertion, desorption, and translocation rate constants and equilibrium constants for association of the amphiphile monomer with the lipid bilayers were measured between 15 degrees C and 35 degrees C, and the standard free energies, enthalpies, and entropies, as well as the activation energies for these processes were derived from these data. The equilibrium partition coefficients for partitioning of the amphiphile between the aqueous phase and the different membrane phases were also derived, and an estimation was made of hypothetical partition coefficients and the respective energetic parameters for partitioning between the different lipid phases if these were to coexist in the same membrane. We show that, contrary to general belief, the association of NBD-lysoMPE with lipid bilayers is not a diffusion-controlled process, the rate-limiting step in insertion being the formation of a free area in the membrane surface of an adequate size for insertion to occur. 相似文献
17.
We systematically examined the effects of gangliosides on the plasma membrane Ca(2+)-ATPase (PMCA) from porcine brain synaptosomes. Our results showed that GD1b (two sialic acid residues) stimulated the activity, GM1 (one sialic acid residue) slightly reduced the activity, while asialo-GM1 (no sialic acid residue) markedly inhibited it, suggesting that sialic acid residues of gangliosides are important in the modulation of the PMCA. We also examined the oligosaccharide effects by using GM1, GM2, and GM3 whose only difference was in the length of their oligosaccharide chain. GM1, GM2, and GM3 reduced the enzyme activities, whereas GM2 and GM3 were potent inhibitors. Gangliosides affect both affinity for Ca(2+) and the Vmax of enzyme. It was observed that GD1b and GM2 increased the affinity of the enzyme for Ca(2+). GD1b, GM2 affected the Vmax with an increase of GD1b, but decreases of GM2. The study of the affinity for ATP and the Vmax of enzyme in the presence of gangliosides showed that GD1b and GM2 had little effect on the ATP binding to the enzyme, but the Vmax was apparently changed. Moreover, the effects of gangliosides are additive to that of calmodulin, suggesting that the modulation of PMCA by gangliosides should be through a different mechanism. The conformational changes induced by gangliosides were probed by fluorescence quenching. We found that fluorescent quenchers (I(-) and Cs(+)) with opposite charges had different accessibility to the IAEDANS binding to the PMCA in the presence of gangliosides. An apparent red shift (25nm) with increased maximum of fluorescence spectrum was also observed in the presence of GD1b. 相似文献
18.
Gangliosides activate the phosphatase activity of the erythrocyte plasma membrane Ca2+-ATPase 总被引:2,自引:0,他引:2
The previous studies showed that gangliosides modulated the ATPase activity of the PMCA from porcine brain synaptosomes [Yongfang Zhao, Xiaoxuan Fan, Fuyu Yang, Xujia Zhang, Arch. Biochem. Biophys. 427 (2004) 204-212]. The effects of gangliosides on the hydrolysis of p-nitrophenyl phosphate (pNPP) catalyzed by the erythrocyte plasma membrane Ca(2+)-ATPase, which was characterized as E(2) conformer of the enzyme, were studied. The results showed that pNPPase activity was stimulated up to seven-fold, depending upon the different gangliosides used with GD1b>GM1>GM2>GM3 approximately Asialo-GM1. Under the same conditions, the ATPase activity was also activated, suggesting that gangliosides should modify both E(1) and E(2) conformer of the enzyme. The Ca(2+), which drove the enzyme to E(1) conformation, inhibited the pNPPase activity, but with the similar half-maximal inhibitory concentrations (IC(50)) in the presence and the absence of gangliosides. Moreover, the pNPPase activity was also inhibited by the raise in ATP concentrations. Gangliosides caused a large increase in V(max), but had no effect on the apparent affinity (K(m)) of the enzyme for pNPP. The kinetic analysis indicated that gangliosides could modulate the erythrocyte PMCA through stabilizing E(2) conformer. 相似文献
19.
20.
We have previously demonstrated that gangliosides were able to modulate the plasma membrane Ca2+-ATPase (PMCA) from porcine brain synaptosomes and porcine erythrocytes [Y. Zhao, X. Fan, F. Yang, X. Zhang, Arch. Biochem. Biophys. 427 (2004) 204-212 and J. Zhang, Y. Zhao, J. Duan, F. Yang, X. Zhang, Arch. Biochem. Biophys. 444 (2005) 1-6]. The results indicated that the PMCA from porcine erythrocytes responded to gangliosides was different from that from synaptosomes, suggesting that the effects of gangliosides on the PMCA are isoform specific. Most interestingly, GM2 activated the PMCA from porcine erythrocytes at lower concentrations, but inhibited it at higher concentrations. In the present study, we found that GD1b, GM1 and GM3 did not affect the calpain digested PMCA from porcine erythrocytes or the intact enzyme in the presence of calmodulin, while GM2 inhibited it. Moreover, a synthetic peptide of 17 amino acid residues corresponding to the 'receptor' of the calmodulin-binding domain of the enzyme interfered with the inhibition of the enzyme by GM2 in competition assays. Taken together, our results suggested that gangliosides GD1b, GM1, GM2 (lower concentrations) and GM3 stimulated the PMCA by the interaction with calmodulin-binding domain, while the interaction of GM2 with the 'receptor' of the calmodulin-binding domain of the enzyme led to the inhibition of the enzyme. 相似文献