首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead accumulation by free and immobilized cyanobacteria, Lyngbya majuscula and Spirulina subsalsa was studied. Exponentially growing biomass was exposed to 1-20 mg L−1 of Pb(II) solution at pH 6, 7 and 8 for time periods ranging from 10 min to 48 h. L. majuscula accumulated 10 times more Pb (13.5 mg g−1) than S. subsalsa (1.32 mg g−1) at pH 6 within 3 h of exposure to 20 mg L−1 Pb(II) solution and 76% of the Pb could be recovered using 0.1 M EDTA. This chelator (2 μM) did not influence Pb accumulation whereas 100 μM citrate increased that of S. subsalsa 6- to 8-fold. L. majuscula filaments enmeshed in a glass wool packed in a column removed 95.8% of the Pb from a 5 mg L−1 Pb solution compared to free and dead biomass which removed 64 and 33.6% Pb respectively. A 92.5% recovery of accumulated Pb from the immobilized biomass suggests that repeated absorption-desorption is possible.  相似文献   

2.
In this study, a new chitosan biopolymer derivative (CTSL) has been synthesized by anchoring a new vanillin-based complexing agent or ligand, namely 4-hydroxy-3-methoxy-5-[(4-methylpiperazin-1-yl)methyl] benzaldehyde, (L) with chitosan (CTS) by means of condensation. The new material was characterized by elemental (CHN), spectral (FTIR and solid state 13C NMR), thermal (TG-DTA and DSC), structural (powder XRD), and morphological (SEM) analyses. The CTSL was employed to study the equilibrium adsorption of various metal ions, namely, Mn(II), Fe(II), Co(II), Cu(II), Ni(II), Cd(II), and Pb(II), as functions of pH of the solutions. Its kinetics of adsorption was evaluated utilizing the pseudo first order and pseudo second order equation models and the equilibrium data were analyzed by Langmuir isotherm model. The CTSL shows good adsorption capacity for metal ions studied in the order Cu(II) > Ni(II) > Cd(II) ? Co ? Mn(II) > Fe(II) > Pb(II) in all studied pH ranges due to the presence of many coordinating moieties present in it.  相似文献   

3.
The interaction between Cd and Zn in aquatic organisms is known to be highly variable. The purpose of this study was to use a subcellular compartmentalization approach to examine Cd and Zn interactions in the deposit-feeding polychaete Capitella capitata (sp. I). Laboratory-reared C. capitata were co-exposed to Cd (background or 50 μg Cd l− 1) and Zn (background or 86 μg Zn l− 1) with 109Cd and 65Zn as radiotracers for 1 week. After the 1-week uptake period, subsets of worms were allowed to depurate accumulated metals for an additional 1 week. Worms from both phases (uptake and loss) were then subjected to subcellular fractionation to determine the compartmentalization of metals as metal-sensitive fractions [MSF — organelles and heat-denaturable proteins (HDP)] and biologically detoxified metals [BDM — heat-stable proteins (HSP) and metal-rich granules (MRG)]. Uptake and loss of Cd and Zn in C. capitata at the whole body level were similar at bkgd-Cd/bkgd-Zn, with worms depurating the majority of accumulated metal (∼ 75% Cd and ∼ 64% Zn). When exposure of Zn or Cd was increased (bkgd-Cd/86-Zn; bkgd-Zn/50-Cd), uptake of background levels of Cd or Zn, respectively, was suppressed by ∼ 50%. These accumulated metals, however, were retained during the loss phase resulting in ∼ 40-50% greater Cd and Zn whole body tissue burdens than those of bkgd-Cd/bkgd-Zn worms. Beyond exhibiting similar patterns of uptake and loss at the whole body level, Cd and Zn behaved similarly at the subcellular level. Under background levels (bkgd-Cd/bkgd-Zn), after uptake, worms partitioned a majority of Cd (∼ 65%) and Zn (∼ 55%) to the HSP and organelles fractions. The HDP and MRG fractions contained less than ∼ 6% of both metals. Following depuration, at bkgd-Cd/bkgd-Zn, Cd and Zn were lost from all subcellular fractions; loss from HSP was the greatest contributor to whole body loss. When exposed to elevated concentrations of Zn or Cd, the suppression in uptake of bkgd-Cd or bkgd-Zn observed in whole body uptake was largely due to suppressions in the storage of Cd and Zn to HSP. These results suggest that Cd-Zn interactions reduce partitioning of both Cd and Zn to HSP, indicating that metal-binding proteins such as metallothioneins play a key role in these interactions.  相似文献   

4.
The role of relativistic effects (RE) in the structures of Cd(II) complexes with crown ethers, and the reason the ‘soft’ Cd(II) strongly prefers to bind to SCN through N, are considered. The synthesis and structures of [Cd(18-crown-6)(thiourea)2] (ClO4)2.18-crown-6 (1) and [Cd(Cy2-18-crown-6)(NCS)2] (2) are reported. (18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; Cy2-18-crown-6 = cis-anti-cis-2,5,8,15,18,21-hexaoxatricylo[20.4.0.0(9,14)]hexacosane). In 1 Cd is coordinated in the plane of the crown which has close to D3d symmetry, with long Cd-O bonds averaging 2.688 Å. The two thiourea molecules form relatively short Cd-S bonds that average 2.468 Å, with an S-Cd-S angle of 164.30°. This structure conforms with the idea that Cd(II) can adopt a near-linear structure involving two covalently-bound donor atoms (the S-donors) with short Cd-S bonds, which resembles gas-phase structures for species such as CdCl2. The structure of 2 is similar, with the two SCN ligands N-bonded to Cd, with short Cd-N bonds of 2.106 Å, and N-Cd-N angle of 180°. The crown in 2 forms long Cd-O bonds that average 2.698 Å. Molecular mechanics calculations suggest that a main reason Cd(II) prefers to bind to SCN through N is that when bound through S, the small Cd-S-C angle, which is typically close to 100°, brings the ligand into close contact with other ligands present, and causes steric destabilization. In contrast, the Cd-N-C angles for SCN coordinated through N are much larger, being 171.4° in 2, which keeps the SCN groups well clear of the crown ether. DFT (density functional theory) calculations are used to generate the structures of [Cd(18-crown-6)(H2O)2]2+ (3) and [Cd(18-crown-6)Cl2] (4). In 3, the Cd(II) is bound to only three O-donors of the macrocycle, with Cd-O bonds averaging 2.465 Å. The coordinated waters form an O-Cd-O angle of 139.47°, with Cd-O bonds of 2.295 Å. In contrast, for 4, the Cd is placed centrally in the cavity of the D3d symmetry crown, with long Cd-O bonds averaging 2.906 Å. The Cl groups form a Cl-Cd-Cl angle of 180°, with short Cd-Cl bonds of 2.412 Å. With ionically bound groups on the axial sites of[Cd(18-crown-6)X2] complexes, such as with X = H2O in 3, the Cd(II) does not adopt linear geometry involving the two X groups, with long Cd-O bonds to the O-donors of the macrocycle. With covalently-bound X = Cl in 4, short Cd-Cl bonds and a linear [Cl-Cd-Cl] unit results, with long Cd-O bonds to the crown ether.  相似文献   

5.
Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. A study of Cd or/and Pb effects on soil enzyme activities and microbial community structure was undertaken with brown soil in a greenhouse for a period of 10 weeks. The experiment results showed that urease, acid phosphatase and dehydrogenase activities were significantly lower (p < 0.05) in Cd or/and Pb treatments than in control. Three enzyme activities decreased with the increasing metal concentrations. The effects of Cd and Pb combined on enzyme activities were higher than Cd or Pb alone. The soil microbial populations were far lower in heavy metal treatments than in control, and soil microbial populations under different heavy metals levels showed a significant difference (p < 0.05). The PCR-DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure.  相似文献   

6.
Studies on two lead and zinc smelters in Northern France (Metaleurop Nord and Umicore) showed that the level of metallic contamination of kitchen garden soils is higher than the agricultural soils located in the same environment. This results most particularly from cropping practices and the addition of various products. Due to the physical and chemical parameters of these soils, the behaviour and transfer of pollutants towards various plants (grass, trees, and vegetables) may be perceptibly different than what is observed on agricultural soils.For a better understanding of pollutant behaviour in kitchen garden topsoils, the Cd, Pb and Zn was fractionated using the SM&T protocol and various extracting solutions (CaCl2, acetic acid, and citric acid) to evaluate their mobility in two highly contaminated soils chosen in the area affected by the past atmospheric emissions of the two smelters. In addition, agricultural topsoil was sampled in a non-massively contaminated area and was therefore chosen as the control soil.The three soils were amended with a mixture of hydroxyapatite (HA) and diammonium phosphate (DAP). At 6 months, extracting procedures were carried out to evaluate the effects of the amendment on the mobility of Cd, Pb and Zn. This step was then supplemented by an evaluation of the impact of the amendment on the phytoavailability of pollutants, which was determined in plant uptake studies with ryegrass (Lolium perenne L.) by considering only the pollutant concentrations in their shoots. Two experiments were carried out. In the first one, unamended and amended soils and ryegrass were watered with distilled water (pH = 7). In the second one, osmosed water (pH = 5.5) was used to evaluate the effects of the acid water-phosphate amendment system on the mobility and phytoavailability of Cd, Pb and Zn. Six months after the start of the experiments, the selective extractions showed that the effectiveness of the amendment studied depended on the element, the soil and the water's pH. Reductions of metal eluted from the contaminated soils were 1.5-37.9% for Cd, and 9.1-80.9% for Pb. Application of P amendment to the combination of osmosed water was generally the most effective for immobilising Cd and Pb elution. In contrast, the mixture of HA and DAP was ineffective for reducing Zn elution. The plant-fresh biomass yield was significantly (p < 0.05) increased by the combination of P amendment and distilled water, whereas a reduction of biomass was recorded with the combined amendment and osmosed water. Addition of P amendment generally reduced Pb uptake in ryegrass shoots (1-47%), while both Cd and Zn were increased by 17.9-79% and 0.45-100%, respectively.  相似文献   

7.
The ability of Kraft lignin, a waste product of paper production, for removing copper, zinc, cadmium and chromium ions from water was investigated. The studies were conducted by a batch method to determine equilibrium parameters. The adsorbed heavy metal ions followed the order: Cr(VI) ? Cd(II) > Cu(II) > Zn(II). The influence of other ions such as Ni(II), Cd(II) and Pb(II), on Cu(II) adsorption by Kraft lignin was evaluated. Obtained results support the idea that adsorption behaviour of heavy metal ions have to be perceived from the aspect of possible influence of interfering ion species.  相似文献   

8.
After extensive analysis, Ulva lactuca dried algae, collected from the Monastir coastal zone, was proven to be successful as an adsorbent for the removal of certain inorganic pollutants. The main objective of this study was the nonlinear modeling of heavy metal removal from an aqueous solution, using a freely available and well analyzed biomaterial, as well as the evaluation of its efficacy on various metal ion sorptions. Although relatively low specific surface area, compared to more conventional adsorbents, the selected biomaterial displays very interesting retention capacities when used with aqueous inorganic pollutants. The pseudo, first and second-order kinetic models were used to investigate the kinetic retention mechanism. Assuming the nonlinear form, the results indicate that the retention mechanism is diffusion controlled. Concerning the heavy metal uptake capacity, it was found that the selected biomaterial has a retention capacity of 67 mg g−1 of Ni(II), 112 mg g−1 of Cu(II), 127 mg g−1of Cd(II) and 230 mg g−1 of Pb(II).  相似文献   

9.
Combined effects of acclimation temperature (12, 20 and 28 °C) and exposure to a toxic metal cadmium (Cd, 50 μg L−1) on haemolymph parameters related to immune defense and metal transport were studied in a model marine bivalve, Crassostrea virginica. Acclimation to elevated temperatures resulted in higher plasma protein concentrations and increased Cd levels in oyster haemolymph plasma and haemocytes. Cd accumulation in haemocytes was linear over the 45 days of Cd exposure and accumulation rates were 0.10, 0.53 and 0.56 μg Cd g−1 dry mass at 12, 20 and 28 °C, respectively. Percentage of blood Cd burden associated with haemocytes increased with increasing temperatures from 13–20% at 12 °C to 26–47% at 20 and 28 °C suggesting a higher role for cellular Cd transport at elevated temperatures. Cd levels in gills and hepatopancreas were positively correlated with Cd concentration in haemocytes, but accumulation rates were considerably faster, so that after 45 days of exposure Cd levels in gills and hepatopancreas were >10–20 times higher than in haemocytes. As a result of slow Cd accumulation possibly reflecting fast haemocyte turnover rates and/or exocytosis of Cd-containing granules, haemocytes in Cd-exposed oysters did not reach threshold Cd burdens required to trigger apoptosis. This suggests that haemocyte viability is not likely to contribute to immunosuppression in the environmentally relevant Cd range. In contrast, elevated temperature (28 °C) resulted in a significant increase in the percentage of apoptotic haemocytes compared to 12 or 20 °C supporting the notion that 28 °C is physiologically stressful for C. virginica. Overall, our study demonstrates strong effects of environmental temperature on haemocyte viability and other important blood parameters such as plasma protein content and metal transport capability which may mask potential Cd effects at environmentally relevant exposure levels.  相似文献   

10.
Eleocharis acicularis was exposed to different concentrations of In, Ag, Pb, Cu, Cd, and Zn in the laboratory to assess its capability in accumulating these metals. After 15 days, 477 mg/kg dry wt. of In was accumulated by the roots; concentrations of Ag, Pb, Cu, Cd, and Zn in the shoots were 326, 1120, 575, 195, and 213 mg/kg dry wt., respectively. The results indicate that E. acicularis has the ability to accumulate these metals from water, making it a good candidate species for phytoremediation and phytomining.  相似文献   

11.
The effects of lead (Pb; 0-1000 mg L−1) stress on the growth and biochemical responses of seedlings of Avicennia marina were examined, with and without cotyledons. After 50 days exposure to Pb, the growth of A. marina was not affected at low concentrations (0-50 mg L−1 Pb). Roots tolerated to high Pb concentrations, with a significant reduction in biomass only at 1000 mg L−1 Pb. In leaves and stems, 500 mg L−1 Pb already caused a significant decline in biomass (0.6-fold). Accumulation of Pb occurred mainly in roots, with some accumulation in cotyledons but very little in leaves. Pb concentrations in both roots and cotyledons were proportional to the Pb levels in the substrate (y = 25.945x − 4281, r2 = 0.67, P = 0.001 for roots, and y = 0.249x + 45.636, r2 = 0.879, P < 0.001 for leaves). In treatments with 500 and 1000 mg L−1 Pb, nitrogen concentrations in cotyledons were higher, while the carbon to nitrogen ratios were significantly lower than in the control without Pb. The Pb levels had significant positive effects on sugar content, MDA concentration and POD activity in both roots and leaves, while the removal of cotyledons significantly decreased the POD activity and MDA content in roots A. marina seedlings according to the two-way multivariate analysis of variance test. The sugar content in the cotyledon of Pb-treated seedlings was significantly lower than that in the control (without Pb), suggesting that more carbohydrate reserves (e.g., sugar) stored in cotyledons had been mobilized to leaves and even roots under Pb treatment.  相似文献   

12.
Anthropogenic metal pollutants bioaccumulated in benthic animals by means of feeding and osmotic diffusion. These metals may affect the physiology of the benthos. In this study, we exposed Capitella sp. I to three metals (Cd, Pb, and Ni), each in eight different concentrations, to determine the effects of metals on the animals. Growth rate, ingestion rate, and percent survival were estimated in three separated experiments. The growth and feeding of the worms were sensitive to even the lowest concentrations of each metal added to the sediments. The lowest observable adverse effect levels for Cd, Ni, and Pb were 0.03, 1.59, and 0.41 μmol g 1 sediment, respectively. Growth rates in the elevated metal contaminant treatments decreased drastically at slightly contaminated levels, lessened detrimental effects at moderately contaminated levels, and showed incompensable intoxication at heavily contaminated levels. The trends in ingestion rates were similar to those of growth rates. No significant difference in survivorship was found among the different contaminant levels for any of the three heavy metals. Capitella sp. I was most sensitive to Cd, followed by Ni and Pb, which had similar effects. The rapid physiological responses of Capitella sp. I allowed the animals to survive metal exposure. Sediment productivity remained unchanged at different contamination levels of Ni and Pb, but was drastically reduced at 4.75 μmol g 1 Cd in the sediment. This further demonstrated Capitella sp. I can adjust their ingestion rates to maintain constant sediment productivities in moderate pollution conditions; however, when threshold concentration was exceeded, homeostasis collapsed.  相似文献   

13.
Hydrothermal synthesis has afforded three cadmium coordination polymers incorporating both an aromatic dicarboxylate ligand and the kinked and hydrogen-bonding capable organodiimine 4,4′-dipyridylamine (dpa). The positions and length of the pendant arms of the aromatric dicarboxylate moiety exerts a strong structure directing effect in this system. {[Cd(hmph)(dpa)] · H2O}n (1, hmph = homophthalate) possesses interdigitated herringbone (6,3) grid layers with an ABAB stacking pattern. {[Cd(1,3-phda)(dpa)(H2O)] · 0.5H2O}n (2, 1,3-phda = 1,3-phenylenediacetate) exhibits a (4,4)-grid layer structure with two different aperture sizes and an unusual ABCD layer stacking pattern. Shortening the pendant arm length resulted in an uncommon CdSO4-type (658 topology) 4-connected 3-D network in {[Cd(iph)(dpa)] · 4H2O}n (3, iph = isophthalate), whose uncoordinated water molecules occupy a sizable incipient void space of 23.7% of the unit cell volume. All three coordination polymers underwent blue-violet luminescence under ultraviolet irradiation.  相似文献   

14.
Deoxyribonucleic acid (DNA) modified gold electrodes are prepared by the dry adsorptive method and the electrochemical behavior of neomycin and the influence of Pb(II) are studied by cyclic voltammetry, chronocoulometry, differential pulse voltammetry. It is found that in 0.01 M phosphate-buffered saline (PBS) buffer solutions (pH 7.3) at DNA/Au electrode neomycin exhibits an irreversible cathodic peak (Ep = 0.489 V), which is more positive and less sensitive compared with that at bare gold electrodes (Ep = 0.423 V). In the presence of Pb(II) the peak shifts toward positive with its height increasing. Moreover, the peak height is linear to neomycin concentration over the range of 0.15-57 μM. The interaction of Pb(II)-neomycin complex with calf thymus DNA is also studied by calculating the binding constants (K) of the Pb(II)-neomycin complex to DNA and binding site size (s) from voltammetric data (1.0 × 107 M−1 and 4 bp, respectively).  相似文献   

15.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

16.
Transport of calcium (Ca) and cadmium (Cd) was examined along the gastro-intestinal tract (GIT) of freshwater and seawater Oncorhynchus mykiss irideus (FWT and SWTies respectively) using in vitro and in vivo experiments. Based on known physiological differences between FWT and SWT which aid in regulating ion levels and osmolarity, we hypothesized that SWT would have lower rates of Ca uptake. Also, we predicted that Cd rates would also be lower because Cd is known to share a common transport mechanism with Ca. Kinetics of Ca and Cd transport were determined using mucosal salines of varying concentrations [1, 10, 30, 60, and 100 (mmol L− 1 for Ca, μmol L− 1 for Cd)]. Linear and saturating relationships were found for Ca for FWT and SWT, but overall SWT had lower rates. Linear and/or saturating relationships were also found for Cd uptake, but rates varied little between fish types. Elevated Ca had no inhibitory effect on Cd transport, and Ca channel blockers nifedipine and verapamil had little effect on Ca or Cd uptake. However, lanthanum reduced Ca transport into some compartments. A 21 day in vivo feeding experiment was also performed where FWT and SWT were exposed to control diets or Cd-spiked diets (552 μg Cd g− 1 food). Whole body Cd uptake between fish types was similar, but the majority of Cd in SWT remained in the posterior intestine tissue, while FWT transported more Cd through their gut wall. Overall it appears that large differences in Ca and Cd uptake between FWT and SWT exist, with SWT generally having lower rates.  相似文献   

17.
Lead (Pb) EC50 values in the very sensitive early development phases (48–72 h post-fertilization) of the mussels Mytilus galloprovincialis and Mytilus trossolus and sea urchin Strongylocentrotus purpuratus in 100% sea water were: M. trossolus — 45 (95% C.I. = 22–72) μg L− 1; M. galloprovincialis — 63 (36–94) μg L− 1; S. purpuratus — 74 (50–101) μg L− 1. Salinity thresholds for normal development varied: M. trossolus > 21 ppt; M. galloprovincialis > 28 ppt; S. purpuratus ≥ 30 ppt. Addition of two spectroscopically distinct dissolved organic matters (DOM) from fresh water (Nordic Reservoir) and sea water (Inshore) moderately decreased the toxicity of Pb to both mussels, but not in a concentration-dependent fashion, with only an approximate doubling of EC50 over the range of 1.4–11.2 mg C L− 1. Independent Pb binding capacity determinations for DOC explained the lack of a relationship between DOM concentration and toxicity. Salinity had no effect on Pb toxicity down to 21 ppt in M. trossolus, and low salinity (21 ppt) did not enhance the protective effect of DOC. Both DOMs increased the toxicity of Pb in developing sea urchin embryos, in contrast to mussels. Relative to Pb, the organisms were 6–9 fold less sensitive to Zn on a molar basis in 100% seawater with the following Zn EC50s: M. trossolus — 135 (103–170) μg L− 1; M. galloprovincialis — 172 (126–227) μg L− 1, S. purpuratus — 151 (129–177) μg L− 1. Nordic Reservoir and Inshore DOM (2–12 mg C L− 1) had no significant effect on Zn toxicity to mussels, in accord with voltammetry data showing an absence of any strong ligand binding for Zn by DOMs. As with Pb, DOMs increased Zn toxicity to urchin larvae. Critical Tissue Residues (CTR) based on whole body concentrations of Pb and Zn were determined for M. galloprovincialis at 48 h and S. purpuratus at 72 h. The median lethal CTR values (LA50s), useful parameters for development of saltwater Biotic Ligand Models (BLMs), were approximately 4-fold higher on a molar basis for Zn than for Pb. The latter were not altered by DOM exposure, despite increased EC50 values, in accord with the tenets of the BLM.  相似文献   

18.
The present study was carried out in natural stands of Typha domingensis in Lake Burullus, Egypt, to investigate (1) nutrient dynamics and heavy metals accumulation in its organs, (2) the phytoextractive potential of its organs and (3) the amount of nutrients and heavy metals released back into the water after decomposition of the dead tissues. Nitrogen concentrations were higher in the shoot than in the root and rhizome, while P, Ca, Cu, Fe, Zn and ash concentrations were higher in the root than in the rhizome and shoot. Significant differences in the concentrations of Mg, Cd, Cu and ash were assessed during the growing season of T. domingensis. The content of most nutrients and heavy metals in the shoot increased rapidly during the early growing season in February, reached maximal values in July and then decreased again. The nutrient and heavy metal contents in the below-ground portion of the plant showed an opposite trend compared to the shoot; they decreased sharply during the spring, when they were translocated, supporting the heterotrophic phase of shoot growth. However, they increased slightly from July to September and then decreased again. The transfer factors of all nutrients and heavy metals from the sediment to the below-ground organs were greater than unity. The higher translocation ratio of N in T. domingensis shoots makes it suitable for N phytoextraction from water and sediment, while the lower translocation ratios for Cd, Cu, Fe, Pb and Zn make it suitable for metal ion phytostabilisation. The dead shoot biomass of the stands at the end of 2010 amounted to 1950 g DM m−2, when the seasonal decomposition process began. With a decay rate of 0.0049 day−1, 1624 g DM m−2 is decomposed in the lake in a year. This is equivalent to releasing the following nutrient and heavy metals into the surrounding water (in g m−2): 23.4 N, 0.8 P, 19.2 Ca, 1.8 Mg, 5.6 Na, 32.8 K, 0.01 Cd, 0.01 Cu, 0.84 Fe, 0.12 Pb and 0.03 Zn.  相似文献   

19.
One hetero-bimetallic Cu(II)/Cd(II) compound, [CdII(H2O)2][CuII(mal)2(H2O)2]n (1) (H2mal = malonic acid) has been synthesized and characterized using single crystal X-ray crystallography, thermogravimetric (TG) studies and X-ray powder diffraction (XRPD) measurements. The compound crystallizes in orthorhombic Pbcn space group having cell dimensions a = 6.6260(12) Å, b = 13.958(2) Å and c = 13.052(2) Å. The solid state structure of compound 1 demonstrates a 3D pillared layered coordination network generated through the simultaneous bridging as well as chelating mode of malonate towards the Cd(II) and Cu(II), respectively. TG analysis reveals relatively high thermal stability for the compound (decomposition temperature ∼320 °C). The thermal study also reveals that the coordinated waters attached to both the metal centers (Cd(II) and Cu(II)) are reversibly lost and gained and this behavior is also corroborated by XRPD studies.  相似文献   

20.
207Pb NMR spectroscopy can be used to monitor the binding of Pb(II) to thiol rich biological small molecules such as glutathione and to zinc finger proteins. The UV/visible (UV/Vis) absorption band centered at 334 nM and the observed 207Pb signal in 207Pb NMR (δ ~ 5750 ppm) indicate that glutathione binds Pb(II) in a trigonal pyramidal geometry (PbS3) at pH 7.5 or higher with a 1:3 molar ratio of Pb(II) to GSH. While previous studies using UV/Vis and extended X-ray absorption fine structure (EXAFS) spectroscopy were interpreted to show that the zinc binding domain from HIV nucleocapsid protein (HIV-CCHC) binds Pb(II) in a single PbS3 environment, the more sensitive 207Pb NMR spectra (at pH 7.0, 1:1 molar ratio) provide compelling evidence for the presence of two PbS3 structures (δ - 5790 and 5744 ppm), one of which is more stable at high temperatures. It has previously been proposed that the HIV-CCHH peptide does not fold properly to afford a PbS2N motif, because histidine does not bind to Pb(II). These predictions are confirmed by the present studies. These results demonstrate the applicability of 207Pb NMR to biomolecular structure determination in proteins with cysteine binding sites for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号