首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composts prepared from a variety of feedstocks were tested for their ability to suppress seedling and root diseases of creeping bentgrass caused by Pythium graminicola. Among the most suppressive materials in laboratory experiments were different batches of a brewery sludge compost and a biosolids compost from Endicott, N.Y. Batches of these composts that were initially not suppressive to Pythium damping-off became more suppressive with increasing compost age. Leaf, yard waste, food, and spent mushroom composts as well as certain biosolids, cow manure, chicken-cow manure, and leaf-chicken manure composts were not suppressive to Pythium damping-off. In some cases, turkey litter, chicken manure, chicken-leaf, and food waste composts were inhibitory to creeping bentgrass seed germination in laboratory experiments. Microbial populations varied among all of the composts tested. Bacterial populations were high in all composts except the turkey litter compost, in which populations were 1,000- to 10,000-fold lower than in the other composts tested. Among the highest populations of heterotrophic fungi and antibiotic-producing actinomycetes were those found in all batches of the brewery sludge compost, whereas the lowest populations were found in turkey litter, chicken manure, and food waste composts. Heat treatment of suppressive composts reduced populations of bacteria, fungi, and actinomycetes in all composts tested. Disease suppressiveness was also reduced or eliminated in heated composts. Amending heated composts with small amounts of nonheated compost restored suppressive properties and partially restored microbial populations to wild-type levels. A strong negative relationship between compost microbial activity (as measured by the hydrolysis of fluorescein diacetate) and Pythium damping-off severity was observed. When composts were applied to creeping bentgrass in field experiments, a significant level of suppressiveness was evident with some composts when disease pressure was high (i.e., disease ratings high in uninoculated plots). A 1991 batch of turkey litter compost and the 1990 batch of Endicott biosolids were consistently suppressive to foliar symptoms of Pythium root rot on creeping bentgrass. This study indicates that suppression of Pythium diseases of creeping bentgrass in batches of brewery sludge and Endicott biosolids composts, and possibly in other suppressive composts examined in less detail in this study, is related directly to the microbial activities in the composts. On the other hand, the mechanisms of Pythium suppression in turkey litter and perhaps other poultry-based composts is not related directly to the compost microbial activity. Although turkey litter showed a lack of suppressiveness in laboratory bioassays and low microbial populations and activity, it resulted in a significant and consistent level of suppressiveness in field experiments. Therefore, the microbiological properties of Pythium-suppressive composts may differ substantially, and measurements of microbial populations and activity may not be predictive of the level of disease suppression in all composts.  相似文献   

2.
Leaf composts were studied for their suppressive effects on Pythium ultimum sporangium germination, cottonseed colonization, and the severity of Pythium damping-off of cotton. A focus of the work was to assess the role of fatty-acid-metabolizing microbial communities in disease suppression. Suppressiveness was expressed within the first few hours of seed germination as revealed by reduced P. ultimum sporangium germination, reduced seed colonization, and reduced damping-off in transplant experiments. These reductions were not observed when cottonseeds were sown in a conducive leaf compost. Microbial consortia recovered from the surface of cottonseeds during the first few hours of germination in suppressive compost (suppressive consortia) induced significant levels of damping-off suppression, whereas no suppression was induced by microbial consortia recovered from cottonseeds germinated in conducive compost (conducive consortia). Suppressive consortia rapidly metabolized linoleic acid, whereas conducive consortia did not. Furthermore, populations of fatty-acid-metabolizing bacteria and actinobacteria were higher in suppressive consortia than in conducive consortia. Individual bacterial isolates varied in their ability to metabolize linoleic acid and protect seedlings from damping-off. Results indicate that communities of compost-inhabiting microorganisms colonizing cottonseeds within the first few hours after sowing in a Pythium-suppressive compost play a major role in the suppression of P. ultimum sporangium germination, seed colonization, and damping-off. Results further indicate that fatty acid metabolism by these seed-colonizing bacterial consortia can explain the Pythium suppression observed.  相似文献   

3.
Pseudomonas strains isolated from the rhizosphere of chickpea (Cicer arietinum L.) and green gram (Vigna radiata L.) were screened for the production of chitinases and cellulases. Five Pseudomonas strains were found to produce appreciable amounts of both enzymes in culture-free supernatants and showed growth inhibition of the two fungi Pythium aphanidermatum (Oomycete) and Rhizoctonia solani (Basidiomycete) in plates on potato dextrose agar medium. The fungal growth inhibition was not correlated with cell wall-degrading enzyme activity, which suggested that other antifungal compounds produced by these rhizobacteria were also involved in antagonism. Coinoculation of the Pseudomonas strains with the Mesorhizobium sp. Cicer strain Ca181 resulted in a significant increase in nodule biomass when grown under sterilized chillum jar conditions. The results suggest that hydrolytic enzymes produced by Pseudomonas sp. contribute to suppression of plant diseases by inhibiting growth of phytopathogenic fungi and also promote nodulation of legumes by rhizobia.  相似文献   

4.
Leaf composts were studied for their suppressive effects on Pythium ultimum sporangium germination, cottonseed colonization, and the severity of Pythium damping-off of cotton. A focus of the work was to assess the role of fatty-acid-metabolizing microbial communities in disease suppression. Suppressiveness was expressed within the first few hours of seed germination as revealed by reduced P. ultimum sporangium germination, reduced seed colonization, and reduced damping-off in transplant experiments. These reductions were not observed when cottonseeds were sown in a conducive leaf compost. Microbial consortia recovered from the surface of cottonseeds during the first few hours of germination in suppressive compost (suppressive consortia) induced significant levels of damping-off suppression, whereas no suppression was induced by microbial consortia recovered from cottonseeds germinated in conducive compost (conducive consortia). Suppressive consortia rapidly metabolized linoleic acid, whereas conducive consortia did not. Furthermore, populations of fatty-acid-metabolizing bacteria and actinobacteria were higher in suppressive consortia than in conducive consortia. Individual bacterial isolates varied in their ability to metabolize linoleic acid and protect seedlings from damping-off. Results indicate that communities of compost-inhabiting microorganisms colonizing cottonseeds within the first few hours after sowing in a Pythium-suppressive compost play a major role in the suppression of P. ultimum sporangium germination, seed colonization, and damping-off. Results further indicate that fatty acid metabolism by these seed-colonizing bacterial consortia can explain the Pythium suppression observed.  相似文献   

5.
Despite its proven agronomic value, the plant disease suppressive effect of composts from olive waste has not been adequately investigated. In the present study, the disease suppressive potential of two olive waste (OW) composts against soil-borne plant pathogens was investigated. Both OW composts showed sizeable, active microbial populations, which were able to grow actively on chitin and cellulose. In plate inhibition trials, OW compost water extracts (CWEs) exerted a significant inhibitory effect on the growth of the pathogens Fusarium oxysporum f.sp. lycopersici (Fol), Pythium ultimum, Phytophtora infestans, Sclerotina sclerotiorum and Verticillium dahliae; and in pot experiments, the OW composts significantly reduced P. ultimum damping-off and Fol wilt diseases on tomato seedlings. The disease suppressive effect of OW composts seems to be due to the combined effects of suppression phenomena caused by the presence of microorganisms competing for both nutrients and space as well as by the activity of specific antagonistic microorganisms.  相似文献   

6.
The role of compost microflora in the suppression of salmonella regrowth in composted sewage sludge was investigated. Microbial inhibition studies of salmonella growth were conducted on nutrient agar, in composts that had been subjected to different temperatures in compost piles, and in radiation sterilized composts inoculated with selected fractions of the compost microflora. Agar assays of inhibition indicated that bacteria and actinomycetes were not suppressive to salmonellae, but a few fungi were. However, compost inoculation assays showed consistently that fungi were not suppressive, but bacteria and actinomycetes were. In compost inoculation assays, microbial antagonists, when present, either killed salmonellae or reduced their growth rate. No suppression of salmonellae occurred in compost taken from 70°C compost-pile zones despite the presence and growth of many types of microbes. With greater numbers and kinds of microbes in 55°C compost, salmonella growth was suppressed 100–10,000-fold. Salmonellae died when inoculated into compost from unheated zones (25–40°C) of piles. Prior colonization of compost with only noncoliform gram-negative bacteria suppressed salmonellae growth 3,000-fold. Coliforms when inoculated prior to salmonellae accounted for 75% of salmonella die-off. Mesophilic curing to allow colonization of curing piles in their entirety by gram-negative bacteria, especially coliforms, should be an effective way to prevent repopulation by salmonellae.  相似文献   

7.
The efficacy of condensed distiller's solubles (CDS), a co-product of ethanol production from corn, rich in organic matter, and high in carbon to nitrogen ratio, was tested as a pre-plant amendment against Verticillium wilt of eggplant and potato scab in potato soils from commercial fields and against damping-off diseases of radish and cucumber seedlings in a peat-based mix and muck soil. Eggplants grown in a potato soil amended with CDS (1% mass/mass) showed less Verticillium wilt and increased fresh (37-54%) and dry (31-45%) plant biomass compared to the control in the greenhouse. In a potato soil with medium levels of disease, CDS (1 or 2%) increased the percentage of marketable tubers by 116% under greenhouse, 119% under micro-plot and 75% under field conditions. In the growth room, CDS (1, 2, and 4%) amendment to a peat-based mix infested with Rhizoctonia solani 1 week before planting seeds improved the percentage of healthy radish seedlings (22-72% healthy seedlings compared to 2% in the control). Levels of disease suppression increased with the incubation time prior to planting. Disease control effect of CDS was not consistent between different batches of peat-based mix. In a non-suppressive batch of peat-based mix, disease suppression by CDS was enhanced by a bio-control agent, Trichoderma hamatum 382. In muck soil from a commercial field naturally-infested with Pythium spp., CDS (0.25, 0.5, and 1%) provided protection of cucumber seedlings from damping-off immediately after incorporation, but the maximum protection was seen after 1 week with all three rates. The number of total bacteria was enhanced in the CDS-amended muck soil. In the micro-plots, CDS (0.5 and 1%) as an amendment to muck soil 2 weeks before planting improved the percentage of healthy cucumber seedlings and fresh plant weight compared to the control. CDS is not toxic to the pathogens and disease suppression is believed to be due to biological activity stimulated by CDS in the substrate.  相似文献   

8.
Abstract

Microbiomes composition, diversity, and variability into a collection of suppressive composts were investigated for effective biological control of soil-borne phytopathogens. Pyrosequencing resulted be a reliable and faster method for characterizing fungal and bacterial microbiomes into composts derived from a varied feedstock of different composition, origin and provenience. Differences in taxonomic structure assessed by bioinformatics analyses were related to feedstock origin. Green composts derived from agro-waste and agroindustrial co/byproducts provided the most varied microbiomes either related to suppression of Rhizoctonia damping-off in bean and Verticillium wilt in eggplant, either to control of Phytium damping-off in cucumber and Phytophthora root rot in tomato. On the other hand, composted municipal solid wastes and co-composted cow manure with household waste prevalently given a most specific microbiota related to suppression of Fusarium wilt in melon.  相似文献   

9.
Peat is the most common organic material used for the preparation of potting mix because of its homogeneous and favorable agronomic characteristics. However, this organic material is poorly suppressive against soilborne pathogens and fungicides are routinely used to manage damping-off diseases. In the present study, we investigated the suppressive capability of five compost – peat mixtures towards the plant pathogens Pythium ultimum, Rhizoctonia solani and Sclerotinia minorLepidium sativum pathosystems. For all organic media, 18 parameters were measured including enzymatic activities (glucanase, N-acetyl-glucosaminidase, chitobiosidase and hydrolysis of fluorescein diacetate), microbiological (BIOLOG® EcoPlates?, culturable bacteria and fungi), and chemical features (pH, EC, total, extractable and humic carbon, total and organic N, NH4–N, total protein and water content). In addition, 13C-CPMAS-NMR spectroscopy was used to characterize the organic materials. Peat amended with composts reduced disease damping-off caused by P. ultimum, R. solani and S. minor in 60% of the mixtures and compost derived from animal manure showed the largest and most consistent disease suppression. Sterilization decreased or eliminated suppressiveness of 42.8% of the mixtures. The most useful parameters to predict disease suppression were different for each pathogen: extractable carbon, O-aryl C and C/N ratio for P. ultimum, alkyl/O-alkyl ratio, N-acetyl-glucosaminidase and chitobiosidase enzymatic activities for R. solani and EC for S. minor. Our results demonstrate that the addition of composts to peat could be useful for the control of soilborne pathogens.  相似文献   

10.
Myrosinases (thioglucoside glucohydrolase, EC 3.2.3.1) are able to hydrolyse glucosinolates in natural plant products. In Arabidopsis thaliana three different genes with different tissue-specific expressions and distribution patterns encode myrosinases. cDNAs of myrosinase genes (TGG1 and TGG2) were isolated from A. thaliana and expressed in Escherichia coli and Pichia pastoris. The enzyme activities of myrosinase TGG1 and TGG2 genes expressed in P. pastoris were higher than those expressed in E. coli. Among six glucosinolates tested for specificity to myrosinases TGG1 and TGG2, the suitable substrates for these two genes expressed in P. pastoris and E. coli were sinigrin, gluconapin, glucobrassicanapin and glucoraphanin. Treatment of sinigrin with myrosinases excreted from reconstructed E. coli and P. pastoris with TGG1 and TGG2 genes showed strong fungicidal effects on mycelial growth of Rhizoctonia solani AG-4, Sclerotium rolfsii, and Pythium aphanidermatum. This study suggests that the combination of glucosinolate with myrosinases excreted from the reconstructed microbes may be of potential for control of soil-borne diseases.  相似文献   

11.
Suppression of soil-borne plant pathogens with compost has been widely studied. Compost has been found to be suppressive against several soil-borne pathogens in various cropping systems. However, an increase of some diseases due to compost usage has also been observed, since compost is a product that varies considerably in chemical, physical and biotic composition, and, consequently, also in ability to suppress soil borne diseases. New opportunities in disease management can be obtained by the selection of antagonists from suppressive composts. The objective of the present work was to isolate microorganisms from a suppressive compost and to test them for their activity against soil-borne pathogens. A compost from green wastes, organic domestic wastes and urban sludge's that showed a good suppressive activity in previous trials was used as source of microorganisms. Serial diluted suspensions of compost samples were plated on five different media: selective for Fusarium sp., selective for Trichoderma sp., selective for oomycetes, potato dextrose agar (PDA) for isolation of fungi, lysogeny broth (LB) for isolation of bacteria. In total, 101 colonies were isolated from plates and tested under laboratory conditions on tomato seedlings growing on perlite medium in Petri plates infected with Fusarium oxysporum f.sp. radicis-lycopersici and compared to a commercial antagonist (Streptomyces griserovidis, Mycostop, Bioplanet). Among them, 28 showed a significant disease reduction and were assessed under greenhouse condition on three pathosystems: Fusarium oxysporum f.sp. basilica/basil, Phytophthora nicotianae/tomato and Rhizoctonia solani/bean. Fusarium spp. selected from compost generally showed a good disease control against Fusarium wilts, while only bacteria significantly controlled P. nicotianae on tomato under greenhouse conditions. None of the microorganisms was able to control the three soil-borne pathogens together, in particular Rhizoctonia solani. Results confirmed the good suppressive activity of the compost under study against soil-borne pathogens. The selection of antagonists from compost is a promising strategy for the development of new biological control agents against soil-borne pathogens.  相似文献   

12.
Seventeen composts from separately collected organic household waste plus one bark compost and one compost from grape marc were analysed for suppression of Pythium ultimum, phytotoxicity, microbial biomass and activity, substrate-induced respiration, extractible phenolic compounds and other physical and chemical parameters. Nine of the samples were mildly suppressive to P. ultimum, the others were conducive. The bark compost sample was strongly suppressive. Therefore of the examined composts, only the bark could be used to exert an economically relevant control of P. ultimum in horticultural media. A large part of the compost samples was slightly phytotoxic. Microbial biomass and SIR had only weak correlations with disease incidence. Microbial activity and content of extractible phenolics were positively correlated with disease incidence. None of the tested parameters were therefore suitable as a predictive test for suppression of P. ultimum with the compost samples used in this study.  相似文献   

13.
In pot experiments under controlled environmental conditions, composted organic household waste showed a suppression of soilborne plant pathogens. The addition of 8 %, 10 % and 30 % compost to the potting material which was artificially infested with Pythium ultimum or Rhizoctonia solani considerably reduced the incidence of disease in different varieties of host plants. It became evident that the degree of protection provided by compost depends upon the amount of compost added and upon the vulnerability of the host plant to infection. In an experiment using increasing levels of inoculum, the compost proved suppressive to the pathogen even under extreme disease conditions. This suppressive effect was still evident in compost which had been stored for prolonged periods.  相似文献   

14.
The relationships among the chemical, physical and biological aspects of compost and their role in suppression of turfgrass pathogens are reviewed. The composting process, mediated by microbial activity, is affected by physical and chemical characteristics which include temperature, aeration, moisture content, C:N ratio and pH. In the absence of parameter restrictions, the microbial community follows a predictable successional pattern resulting in the re-colonization of compost with metabolically active mesophilic populations that can be suppressive towards plant pathogens. Although mechanisms of suppression are not fully understood, those postulated include physiochemical and biological characteristics. The physiochemical characteristics of composts can alter suppressive properties through direct effects on pathogens and antagonistic microorganisms, or indirect effects on host systems through the supply of nutrients, improvement of soil structure, porosity and water retention capabilities, along with other factors. Biological characteristics centre on microbial community involvement in suppressive mechanisms, which can include one or a combination of competition for nutrients, antibiosis, lytic and other extracellular enzyme production, parasitism, predation and host-mediated induction of resistance. As a result of the potential benefits of compost, there is considerable interest in determining the capacity for composts to suppress turfgrass pathogens. Although the exact mechanisms of suppression are largely unknown, there appear to be several factors that play an integrated role. The use of composts that successfully suppress turfgrass diseases will permit a reduction in the use of chemical controls, and slow the development of fungicide resistance.  相似文献   

15.
水稻(Oryza sativa)是世界上最重要的粮食作物, 但稻瘟病和纹枯病等病害严重危害水稻的产量和品质, 给我国乃至全球粮食安全带来巨大威胁。鉴定水稻抗病资源、克隆抗病基因、揭示抗性机理并在育种中加以利用, 对抵御水稻病害和保障粮食安全具有十分重要的作用。准确评价水稻资源的抗病性, 是开展抗病机理研究和育种生产应用的关键环节。该文详述了水稻幼苗期人工喷雾接种、分蘖期和孕穗期田间注射接种与离体叶片戳伤接种的稻瘟病抗性鉴定方法, 以及水稻分蘖期田间接种、孕穗期温室接种和离体茎秆接种的纹枯病抗性鉴定方法, 以期为同行鉴定水稻资源、开展抗病理论和应用研究提供参考。  相似文献   

16.
李伟滔  贺闽  陈学伟 《植物学报》1983,54(5):547-549
由真菌Rhizoctonia solani引起的纹枯病严重危害玉米(Zea mays)和水稻(Oryza sativa)等作物的安全生产。R. solani的宿主范围广且抗源少, 加之相关的抗性机制研究有限, 导致纹枯病的危害长期得不到有效控制。近期, 中国科学家通过对318份玉米自交系进行全基因组关联分析, 筛选到1个与纹枯病抗性相关的、编码F-box结构域蛋白的候选基因ZmFBL41 (GRMZM2G109140)。ZmFBL41蛋白是SCF (SKP1-Cullin-F-box) E3泛素连接酶复合体的一员, 能介导复合体对肉桂醇脱氢酶ZmCAD的降解, 从而降低木质素的积累, 使玉米易感纹枯病。玉米抗病自交系Chang7-2中, 蛋白ZmFBL41 Chang7-2因2个关键氨基酸的变异, 不能结合并降解底物ZmCAD, 使木质素含量增加, 从而提高玉米对纹枯病的抗性。该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源。  相似文献   

17.
李伟滔  贺闽  陈学伟 《植物学报》2019,54(5):547-549
由真菌Rhizoctonia solani引起的纹枯病严重危害玉米(Zea mays)和水稻(Oryza sativa)等作物的安全生产。R. solani的宿主范围广且抗源少, 加之相关的抗性机制研究有限, 导致纹枯病的危害长期得不到有效控制。近期, 中国科学家通过对318份玉米自交系进行全基因组关联分析, 筛选到1个与纹枯病抗性相关的、编码F-box结构域蛋白的候选基因ZmFBL41 (GRMZM2G109140)。ZmFBL41蛋白是SCF (SKP1-Cullin-F-box) E3泛素连接酶复合体的一员, 能介导复合体对肉桂醇脱氢酶ZmCAD的降解, 从而降低木质素的积累, 使玉米易感纹枯病。玉米抗病自交系Chang7-2中, 蛋白ZmFBL41 Chang7-2因2个关键氨基酸的变异, 不能结合并降解底物ZmCAD, 使木质素含量增加, 从而提高玉米对纹枯病的抗性。该研究率先揭示了SCF复合体可通过降解肉桂醇脱氢酶来调控植物免疫反应的新型分子机制, 为提高玉米及其它作物对纹枯病的抗性提供了重要理论依据和基因资源。  相似文献   

18.
Polyfluorinated 2-benzylthiobenzothiazoles 3a–l are prepared via a microwave-assisted, one-pot procedure. The advantages, such as good to excellent yields, shorter reaction time (14–21 min), readily available starting material, and simple purification procedure, distinguish the present protocol from other existing methods used for the synthesis of 2-benzylthiobenzothiazoles. Bioassay indicated that most of the compounds showed significant fungicidal activity against Rhizoctonia solani, Botrytis cinereapers, and Dothiorella gregaria at a dosage of 50 μg/mL. Interestingly, compared to the control of commercial fungicide, triadimefon, compound 3c exhibited much higher activities against R. solani, B. cinereapers, and D. gregaria, which showed that the polyfluorinated 2-benzylthiobenzothiazoles can be used as lead compound for developing novel fungicides.  相似文献   

19.
A sequential extraction procedure was employed to determine the soil fractions, and assess plant availability of Cr, Cu, Ni, Pb and Zn in a Glynwood silt loam amended with five rates (0, 30, 60, 120 and 240 metric tons/ha) of composted municipal solid waste (CMSW) or composted sewage sludge (CSS) cropped to oats (Avena sativa). The application of the composts tended to shift the solid phase forms of the metals away from those extractable with HNO3 to those extractable with NaOH and EDTA. The more labile fractions (KNO3 and H2O extracts) of the metals typically decreased with application of CMSW and CSS. Crop dry matter increased at the 30 and 60 MT/ha CMSW rates by 142 and 152%, respectively, after which yields declined to below control values. Yields at all rates of CSS declined. The CMSW and CSS had an insignificant effect on concentrations of Cr and Pb in oat tissue, but tissue levels of Cu, Ni and Zn increased with increased rate of compost application.  相似文献   

20.
Guo YX  Liu QH  Ng TB  Wang HX 《Peptides》2005,26(12):2384-2391
Isarfelin, a peptide with inhibitory activity on mycelial growth in Rhizoctonia solani and Sclerotinia sclerotiorum and insecticidal activity toward Leucania separata, was isolated from the mycelia of Isaria felina. The IC50 value of its antifungal activity against R. solani was 3.1 μg mL−1. However, it was devoid of activity toward several bacterial species including Bacillus subtilis, E. coli and Staphylococcus aureus. The isolation procedure involved ethanol extraction, adsorption on YPR II macropore adsorption resin, ethyl acetate extraction, petroleum ether precipitation and recrystallization from ethyl acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号