首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the intracellular redox environment of cells have been reported to be critical for the activation of apoptotic enzymes and the progression of programmed cell death. Glutathione (GSH) depletion is an early hallmark observed in apoptosis, and we have demonstrated that GSH efflux during death receptor-mediated apoptosis occurs via a GSH transporter. We now evaluate the relationship between GSH depletion, the generation of reactive oxygen species (ROS), and the progression of apoptosis. Simultaneous single cell analysis of changes in GSH content and ROS formation by multiparametric FACS revealed that loss of intracellular GSH was paralleled by the generation of different ROS including hydrogen peroxide, superoxide anion, hydroxyl radical, and lipid peroxides. However, inhibition of ROS formation by a variety of antioxidants showed that GSH loss was independent from the generation of ROS. Furthermore, GSH depletion was observed to be necessary for ROS generation. Interestingly, high extracellular thiol concentration (GSH and N-acetyl-cysteine) inhibited apoptosis, whereas, inhibition of ROS generation by other non-thiol antioxidants was ineffective in preventing cell death. Finally, GSH depletion was shown to be a necessary for the progression of apoptosis activated by both extrinsic and intrinsic signaling pathways. These results document a necessary and critical role for GSH loss in apoptosis and clearly uncouple for the first time GSH depletion from ROS formation.  相似文献   

2.
3.
Intracellular glutathione (GSH) depletion is an important hallmark of apoptosis. We have recently shown that GSH depletion by its extrusion regulates apoptosis independently of excessive reactive oxygen species accumulation. However, the mechanisms by which GSH depletion regulates apoptosis are still unclear. Because disruption of intracellular ionic homeostasis, associated with apoptotic volume decrease (AVD), is necessary for the progression of apoptotic cell death, we sought to evaluate the relationship between GSH transport and ionic homeostasis during Fas ligand (FasL)-induced apoptosis in Jurkat cells. GSH depletion in response to FasL was paralleled by distinct degrees of AVD identified by differences in cellular forward scatter and electronic impedance analysis. Inhibition of GSH efflux prevented AVD, K+ loss, and the activation of two distinct ionic conductances, mediated by Kv1.3 and outward rectifying Cl- channels. Reciprocally, stimulation of GSH loss accelerated the loss of K+, AVD, and consequently the progression of the execution phase of apoptosis. Although high extracellular K+ inhibited FasL-induced apoptosis, GSH depletion was largely independent of K+ loss. These results suggest that deregulation of GSH and ionic homeostasis converge in the regulation of apoptosis in lymphoid cells.  相似文献   

4.
5.
Although the depletion of reduced glutathione (GSH) has been observed in a variety of apoptotic systems, little is known about the mechanism of GSH depletion. In this study we used polarized MDCK cells to study the GSH flux during ricin-induced apoptosis. Here we report that the specific accumulation of GSH occurred in the basolateral medium during ricin treatment with similar kinetics to in apoptotic changes such as an increase in caspase-3 like activity and DNA fragmentation, while there was no significant increase in the GSH level in apical medium. These results suggest that GSH efflux occurred through a GSH-specific channel or transporter located in the basolateral membrane domain of polarized MDCK cells undergoing apoptosis. Treatment with other protein toxins such as modeccin, Pseudomonas toxin, and diphtheria toxin, which can induce apoptotic cell death, also resulted in selective GSH efflux from the basolateral side. Thus, GSH efflux through a specific transporter may be a common step of apoptosis induced by these toxins, while these toxins have different intoxication mechanisms leading to protein synthesis inhibition. Pretreatment of cells with Z-Asp-CH(2)-DCB, a caspase family inhibitor, inhibited ricin-induced basolateral GSH efflux as well as DNA fragmentation, suggesting that the activation of caspases, i.e. those that are inhibited by Z-Asp-CH(2)-DCB, is implicated in the opening of the GSH transporter.  相似文献   

6.
The proteins responsible for reduced glutathione (GSH) export under both basal conditions and in cells undergoing apoptosis have not yet been identified, although recent studies implicate some members of the multidrug resistance-associated protein family (MRP/ABCC) in this process. To examine the role of MRP1 in GSH release, the present study measured basal and apoptotic GSH efflux in HEK293 cells stably transfected with human MRP1. MRP1-overexpressing cells had lower intracellular GSH levels and higher levels of GSH release, under both basal conditions and after apoptosis was induced with either Fas antibody or staurosporine. Despite the enhanced GSH efflux in MRP1-overexpressing cells, intracellular GSH levels were not further depleted when cells were treated with Fas antibody or staurosporine, suggesting an increase in GSH synthesis. MRP1-overexpressing cells were also less susceptible to apoptosis, suggesting that the stable intracellular GSH levels may have protected cells from death. Overall, these results demonstrate that basal and apoptotic GSH release are markedly enhanced in cells overexpressing MRP1, suggesting that MRP1 plays a key role in these processes. The enhanced GSH release, with a concurrent decrease of intracellular GSH, appears to be necessary for the progression of apoptosis.  相似文献   

7.
N-Acetylcysteine (NAC) has been used as an antioxidant to prevent apoptosis triggered by different stimuli in different cell types. It is common opinion that cellular redox, which is largely determined by the ratio of oxidized and reduced glutathione (GSH), plays a significant role in the propensity of cells to undergo apoptosis. However, there are also contrasting opinions stating that intracellular GSH depletion or supplemented GSH alone are not sufficient to lead cells to apoptosis or conversely protect them. Unexpectedly, this study shows that NAC, even if it maintains the peculiar characteristics of an agent capable of reducing cell proliferation and increasing intracellular GSH content, increases apoptosis induced by H(2)O(2) treatment and mo-antiFas triggering in a 3DO cell line. We found that 24 h of NAC pre-treatment can shift cellular death from necrotic to apoptotic and determine an early expression of FasL in a 3DO cell line treated with H(2)O(2).  相似文献   

8.
Oxidative stress is caused by imbalance between the production of reactive oxygen species (ROS) and biological system ability to readily detoxify the reactive intermediates or repair the resulting damage. 2-deoxy-D-ribose (dRib) is known to induce apoptosis by provoking an oxidative stress by depleting glutathione (GSH). In this paper, we elucidate the mechanisms underlying GSH depletion in response to dRib treatment. We demonstrated that the observed GSH depletion is not only due to inhibition of synthesis, by inhibiting gamma-glutamyl-cysteine synthetase, but also due to its increased efflux, by the activity of multidrug resistance associated proteins transporters. We conclude that dRib interferes with GSH homeostasis and that likely cellular oxidative stress is a consequence of GSH depletion. Various GSH fates, such as direct oxidation, lack of synthesis or of storage, characterize different kinds of oxidative stress. In the light of our observations we conclude that dRib does not induce GSH oxidation but interferes with GSH synthesis and storage. Lack of GSH allows accumulation of ROS and cells, disarmed against oxidative insults, undergo apoptosis.  相似文献   

9.
Expression of determined Asn-bound glycans (N-glycans) in cell surface glycoproteins regulates different processes in tumour cell biology. Specific patterns of N-glycosylation are displayed by highly metastatic cells and it has been shown that inhibition of N-glycan processing restrains cell proliferation and induces cell death via apoptosis. However, the mechanisms by which different N-glycosylation states may regulate cell viability and growth are not understood. Since malignant cells express high levels of intracellular glutathione (GSH) and a reduction of intracellular GSH induces cell death via apoptosis, we investigated whether GSH was involved in the induction of apoptosis by removal of cell surface N-glycans. We found that removal of N-glycans from cell surface proteins by treating the rhabdomyosarcoma cell line S4MH with tunicamycin or N-glycosidase resulted in a reduction in intracellular GSH content and cell death via apoptosis. Moreover, GSH depletion caused by the specific inhibitor of GSH synthesis BSO induced apoptosis in S4MH cells. This data indicates that adequate N-glycosylation of cell surface glycoproteins is required for maintenance of intracellular GSH levels that are necessary for cell survival and proliferation.  相似文献   

10.
We have investigated the role played by GSH efflux in apoptosis of human HaCaT keratinocytes induced by UVA irradiation. UVA irradiation of HaCaT cells caused a rapid rise in GSH efflux across the intact cell membrane, followed by an increase in apoptosis. GSH efflux was stimulated by glucose and was reduced by the addition of exogenous GSH and intracellular GSH depletion by buthionine sulfoximine, suggesting that GSH transport is active and is influenced by the GSH concentration gradient across the cell membrane. Verapamil and cyclosporin A, blockers of the multidrug resistance-associated protein, decreased UVA-induced GSH efflux. GSH efflux occurred within 2 h of UVA irradiation, suggesting that the stimulation of GSH efflux is due to an increase in the activity of pre-existing multidrug resistance-associated protein transporter carrier. Although inhibition of GSH efflux did not affect caspase activation and DNA fragmentation, it delayed the gradual increase in plasma membrane permeability and reduced phosphatidylserine translocation in HaCaT cells. It is therefore likely that upon UVA irradiation, GSH efflux increased the intracellular oxidative stress without intervention of reactive oxygen species, thus resulting in more phosphatidylserine externalization and membrane rearrangement. These provide targets for macrophage recognition and phagocytosis and thus minimize the potential to invoke inflammation or neoplastic transformation.  相似文献   

11.
Cadmium (Cd) is a known nephrotoxic element. In this study, the primary cultures of rat proximal tubular (rPT) cells were treated with low doses of cadmium acetate (2.5 and 5 μM) to investigate its cytotoxic mechanism. A progressive loss in cell viability, together with a significant increase in the number of apoptotic and necrotic cells, were seen in the experiment. Simultaneously, elevation of intracellular [Ca2+]i and reactive oxygen species (ROS) levels, significant depletion of mitochondrial membrane potential(Δ Ψ) and cellular glutathione (GSH), intracellular acidification, and inhibition of Na+, K+-ATPase and Ca2+-ATPase activities were revealed in a dose-dependent manner during the exposure, while the cellular death and the apoptosis could be markedly reversed by N-acetyl-l-cysteine (NAC). Also, the calcium overload and GSH depletion were significantly affected by NAC. In conclusion, exposure of rPT cells to low-dose cadmium led to cellular death, mediated by an apoptotic and a necrotic mechanism. The apoptotic death might be the chief mechanism, which may be mediated by oxidative stress. Also, a disorder of intracellular homeostasis induced by oxidative stress and mitochondrial dysfunction is a trigger of apoptosis in rPT cells.  相似文献   

12.
Loss of intracellular neuronal glutathione (GSH) is an important feature of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The consequences of GSH depletion include increased oxidative damage to proteins, lipids, and DNA and subsequent cytotoxic effects. GSH is also an important modulator of cellular copper (Cu) homeostasis and altered Cu metabolism is central to the pathology of several neurodegenerative diseases. The cytotoxic effects of Cu in cells depleted of GSH are not well understood. We have previously reported that depletion of neuronal GSH levels results in cell death from trace levels of extracellular Cu due to elevated Cu(I)-mediated free radical production. In this study we further examined the molecular pathway of trace Cu toxicity in neurons and fibroblasts depleted of GSH. Treatment of primary cortical neurons or 3T3 fibroblasts with the glutathione synthetase inhibitor buthionine sulfoximine resulted in substantial loss of intracellular GSH and increased cytotoxicity. We found that both neurons and fibroblasts revealed increased expression and activation of p53 after depletion of GSH. The increased p53 activity was induced by extracellular trace Cu. Furthermore, we showed that in GSH-depleted cells, Cu induced an increase in oxidative stress resulting in DNA damage and activation of p53-dependent cell death. These findings may have important implications for neurodegenerative disorders that involve GSH depletion and aberrant Cu metabolism.  相似文献   

13.
There is increasing evidence to suggest that reactive oxygen species, including a variety of lipid oxidation products and other physiologically existing oxidative stimuli, can induce an adaptive response and enhance cell tolerance. In the present study, by using cultured cortical neurons, we investigated the effect of electrophilic lipids, such as 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) and 4-hydroxy-2-nonenal (4-HNE) against the cell death induced by H(2)O(2) and glutamate. Pre-treatment with both 15d-PGJ(2) and 4-HNE at sublethal concentrations resulted in a significant protective effect against oxidative stress, and 15d-PGJ(2), in particular, exhibited a complete protective effect against glutamate-induced neuronal cell death. Pre-treatment with 15d-PGJ(2) increased the intracellular glutathione (GSH) as well as the gene expression of glutamate-cysteine ligase (GCL), the rate-limiting enzyme of GSH synthesis. 15d-PGJ(2) protected cells from glutamate-induced GSH depletion, while the inhibition of cellular GSH synthesis by buthionine sulfoximine abolished the adaptive response induced by 15d-PGJ(2). These findings indicate that at low levels, 15d-PGJ(2) acts as a potent survival mediator against glutamate-induced insults via the induction of an adaptive response primarily through the up-regulation of the intracellular GSH synthesis.  相似文献   

14.
Cellular Mechanisms of Resistance to Chronic Oxidative Stress   总被引:1,自引:0,他引:1  
Oxidative stress is implicated in several pathologies such as AIDS, Alzheimer’s disease, and Parkinson’s disease, as well as in normal aging. As a model system to study the response of cells to oxidative insults, glutamate toxicity on a mouse nerve cell line, HT-22, was examined. Glutamate exposure kills HT-22 via a nonreceptor-mediated oxidative pathway by blocking cystine uptake and causing depletion of intracellular glutathione (GSH), leading to the accumulation of reactive oxygen species and, ultimately, apoptotic cell death. Several HT-22 subclones that are 10-fold resistant to exogenous glutamate were isolated and the mechanisms involved in resistance characterized. The expression levels of neither heat shock proteins nor apoptosis-related proteins are changed in the resistant cells. In contrast, the antioxidant enzyme catalase, but not glutathione peroxidase nor superoxide dismutase, is more highly expressed in the resistant than in the parental cells. In addition, the resistant cells have enhanced rates of GSH regeneration due to higher activities of the GSH metabolic enzymes γ-glutamylcysteine synthetase and GSH reductase, and GSH S-transferases activities are also elevated. As a consequence of these alterations, the glutamate resistant cells are also more resistant to organic hydroperoxides and anticancer drugs that affect these GSH enzymes. These results indicate that resistance to apoptotic oxidative stress may be acquired by coordinated changes in multiple antioxidant pathways.  相似文献   

15.
L-glutamine (Gln) withdrawal rapidly triggers apoptosis in the murine hybridoma cell line Sp2/0-Ag14 (Sp2/0). In this report, we examined the possibility that Gln deprivation of Sp2/0 cells triggers an oxidative stress which would contribute to the activation of apoptotic pathways. Gln withdrawal triggered an oxidative stress in Sp2/0 cells, as indicated by an increased accumulation of reactive oxygen species (ROS) and an increase in the intracellular content in protein carbonyl groups. Gln starvation also caused a decrease in the intracellular levels of glutathione (GSH). However, a decrease in GSH was not sufficient to induce Sp2/0 cell death since reducing GSH levels with DL-buthionine-[S,R]-sulfoximine did not affect cell viability. The antioxidant N-acetyl-L-cysteine (NAC), while effective in inhibiting ROS accumulation and oxidative stress, did not prevent the loss in cell viability or the processing and activation of caspase-3 triggered by Gln starvation. On the other hand, NAC did reduce the formation of apoptotic bodies in dying cells. Altogether these results indicate that in Sp2/0 cells, Gln deprivation leads to the induction of an oxidative stress which, while involved in the formation of apoptotic bodies, is not essential to the activation of the cell death program.  相似文献   

16.
While the build-up of oxidized proteins within cells is believed to be toxic, there is currently no evidence linking protein carbonylation and cell death. In the present study, we show that incubation of nPC12 (neuron-like PC12) cells with 50 μM DEM (diethyl maleate) leads to a partial and transient depletion of glutathione (GSH). Concomitant with GSH disappearance there is increased accumulation of PCOs (protein carbonyls) and cell death (both by necrosis and apoptosis). Immunocytochemical studies also revealed a temporal/spatial relationship between carbonylation and cellular apoptosis. In addition, the extent of all three, PCO accumulation, protein aggregation and cell death, augments if oxidized proteins are not removed by proteasomal degradation. Furthermore, the effectiveness of the carbonyl scavengers hydralazine, histidine hydrazide and methoxylamine at preventing cell death identifies PCOs as the toxic species. Experiments using well-characterized apoptosis inhibitors place protein carbonylation downstream of the mitochondrial transition pore opening and upstream of caspase activation. While the study focused mostly on nPC12 cells, experiments in primary neuronal cultures yielded the same results. The findings are also not restricted to DEM-induced cell death, since a similar relationship between carbonylation and apoptosis was found in staurosporine- and buthionine sulfoximine-treated nPC12 cells. In sum, the above results show for the first time a causal relationship between carbonylation, protein aggregation and apoptosis of neurons undergoing oxidative damage. To the best of our knowledge, this is the first study to place direct (oxidative) protein carbonylation within the apoptotic pathway.  相似文献   

17.
The depletion of cell calcium from isolated rat hepatocytes results in stimulated lipid peroxidation, loss of intracellular and mitochondrial GSH (reduced glutathione), and enhancement of both efflux and oxidation of GSH. These events are followed by cell injury and enhance the susceptibility of the cells to toxic chemicals. It is shown herein that an initial event in the generation of such injury is the depletion of cellular alpha-tocopherol. alpha-Tocopheryl succinate addition (25 microM) to the calcium-depleted cells markedly elevated the alpha-tocopherol content of the cells, inhibited the associated lipid peroxidation, and maintained intracellular GSH levels without affecting its efflux or redox status. This resulted in an enhanced formation of total glutathione after a 5-h incubation, which correlated with the alpha-tocopherol content of the cells, and was greater than that expected by a direct sparing action of vitamin E. Inhibition of hepatocyte glutathione biosynthesis by buthionine sulfoximine (0.5 mM) eliminated the enhancement of GSH formation by vitamin E. Analysis of endogenous and 35S-labelled precursors of glutathione biosynthesis by high-performance liquid chromatography demonstrated that the depletion of cellular alpha-tocopherol resulted in the efflux of glutathione precursors. It is concluded that cell injury associated with alpha-tocopherol depletion is partly the result of the efflux of glutathione precursors, and hence diminished biosynthesis and intracellular levels of GSH. These losses and resultant cell injury are preventable by maintenance of cellular alpha-tocopherol levels.  相似文献   

18.
Present study investigated whether endosulfan, an organochlorine pesticide is able to deplete glutathione (GSH) and induce apoptosis in human peripheral blood mononuclear cells (PBMC) in vitro. The role of oxidative stress in the induction of apoptosis was also evaluated by the measurement of the GSH level in cell lysate. The protective role of N-acetylcysteine (NAC) on endosulfan-induced apoptosis was also studied. Isolated human PBMC were exposed to increasing concentrations (0-100 microM) of endosulfan (alpha/beta at 70:30 mixture) alone and in combination with NAC (20 microM) up to 24 h. Apoptotic cell death was determined by Annexin-V Cy3.18 binding and DNA fragmentation assays. Cellular GSH level was measured using dithionitrobenzene. Endosulfan at low concentrations, i.e., 5 and 10 microM, did not cause significant death during 6 h/12 h incubation, whereas a concentration-dependent cell death was observed at 24 h. DNA fragmentation analysis revealed no appreciable difference between control cells and 5 microM/10 microM endosulfan treated cells, where only high molecular weight DNA band was observed. Significant ladder formation was observed at higher concentration, which is indicative of apoptotic cell death. Intracellular GSH levels decreased significantly in endosulfan-treated cells in a dose-dependent manner, showing a close correlation between oxidative stress and degree of apoptosis of PBMC. Cotreatment with NAC attenuated GSH depletion as well as apoptosis. Our results provide experimental evidence of involvement of oxidative stress in endosulfan-mediated apoptosis in human PBMC in vitro.  相似文献   

19.
Programmed cell death, or apoptosis, is a physiological cell suicide mechanism, which is triggered in the cells by different stimuli. It has been shown that proteases play a significant role both in the target cell killing by cytotoxic lymphocytes and in the TNF- or anti-Fas-induced cell death. The proteases involved in the early (induction) and late (cell self-destruction) stages of apoptosis are reviewed. It is suggested that the late stages are connected with the activation of a cascade of intracellular proteases, which leads to massive protein destruction. It is likely that the protein destruction is mainly designed for preventing autoimmune response to proteins released from dying cells.  相似文献   

20.
Several pieces of evidence have demonstrated the importance of reduction/oxidation (redox) signaling in biological processes, including sensitivity toward apoptosis. In parallel, it was recently reported that growth factors induce the generation of reactive oxygen species (ROS). Therefore, we tested the hypothesis that the anti-apoptotic effect of epidermal growth factor (EGF) was mediated by changes in the redox state of hepatocytes through changes in GSH stocks. Isolated mouse hepatocytes were cultured and exposed to anti-Fas stimulation in order to induce apoptosis. Cell death by apoptosis was assessed by Hoechst 33258 staining and by measuring caspase-3 proteolysis activity. Cell treatment with EGF significantly decreased total (GSx) and reduced (GSH) glutathione levels in the presence and the absence of anti-Fas. Furthermore, glutathione reductase activity was lower in EGF-treated cultures (by 28%) as compared to untreated cultures which lead to a significant decline in GSH/GSx ratio. These effects were found to be EGF-receptor tyrosine kinase activity dependent. Co-stimulation of cells with anti-Fas and EGF attenuated caspase-3 activation and cell death by apoptosis by 70%. GSH monoethylester (GSHmee) significantly attenuated the effect of EGF on GSH and GSH/GSx ratio. It caused an increase in caspase-3 activation and in the percentage of apoptotic cells in anti-Fas + EGF-treated cells, thus resulting in a 53% decline in the protective effect of EGF. In conclusion, EGF induces a significant and specific depletion and oxidization of intracellular GSH, paralleled by a protection against Fas-induced apoptosis. GSH repenishment partly counteracted these effects suggesting that GSH depletion contributed to the protective effect of EGF against caspase-3 activation and cell death by apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号