首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMG-CoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoprotein-triglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.  相似文献   

2.
Sitosterolemia.   总被引:7,自引:0,他引:7  
Sitosterolemia is a rare inherited lipid storage disease characterized chemically by the accumulation of plant sterols and 5 alpha-saturated stanols in plasma and tissues. Very low cholesterol synthesis due to a deficiency of HMG-CoA reductase associated with increased intestinal plant sterol absorption and slow hepatic sterol removal are major biochemical features. Because cholesterol synthesis cannot up-regulate, bile acid malabsorption mobilizes body sterols for bile acid synthesis and dramatically lowers plasma and monocyte sterol concentrations and may halt the progression of the atherosclerotic process.  相似文献   

3.
4.
5.
We determined the extent to which diurnal variation in cholesterol synthesis in liver is controlled by steady-state mRNA levels for the rate-limiting enzyme in the pathway, hydroxymethylglutaryl (HMG)-CoA reductase. Rats 30 days of age and maintained on a low-cholesterol diet since weaning were injected intraperitoneally with (3)H(2)O. The specific radioactivity of the whole-body water pool soon became constant, allowing for expression of values for incorporation of label into cholesterol as absolute rates of cholesterol synthesis. In liver, there was a peak of cholesterol synthesis from 8 pm to midnight, a 4-fold increase over synthesis rates from 8 am to noon. Increases in synthesis were quantitatively in lock step with increases in mRNA levels for HMG-CoA reductase occurring 4 h earlier. In a parallel experiment, rats received 1% cholesterol in the diet from weaning to 30 days of age. Basal levels of hepatic cholesterol synthesis were greatly diminished and there was little diurnal variation of cholesterol synthesis or of levels of mRNA for HMG-CoA reductase. Levels of mRNA for the low density lipoprotein receptor and scavenger receptor-B1 (putative high density lipoprotein receptor) showed little diurnal variation, regardless of diet. This suggests that diurnal variation of hepatic cholesterol synthesis is driven primarily by varying the steady-state mRNA levels for HMG-CoA reductase. Other tissues were also examined. Adrenal gland also showed a 4-fold diurnal increase in accumulation of recently synthesized cholesterol. In contrast to liver, however, there was little corresponding change in mRNA expression for HMG-CoA reductase. Much of this newly synthesized cholesterol may be of hepatic origin, imported into adrenal by SR-B1, whose mRNA was up-regulated 2-fold. In brain, there was no diurnal variation in either cholesterol synthesis or mRNA expression, and no influence of high- or low-cholesterol diets on synthesis rates or HMG-CoA reductase mRNA levels.  相似文献   

6.
Whole body sterol balance, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, hepatic low-density lipoprotein (LDL) receptor levels and net tissue cholesterol concentrations were determined in guinea pigs fed either a corn oil- or lard-based purified diet for 6-7 weeks. In comparison to the saturated lard diet, the polyunsaturated corn oil diet resulted in a 34% reduction in plasma total cholesterol levels (P less than 0.02) and a 40% lower triacylglycerol level (P less than 0.02). Feeding the corn oil diet altered very-low-density lipoprotein (VLDL) and LDL composition; the percent cholesterol ester in both particles was decreased and the relative percentages of VLDL triacylglycerol and LDL phospholipid increased. The ratio of surface to core components of LDL from corn oil-fed guinea pigs was significantly higher compared to LDL from animals fed lard. Dietary fat quality had no effect on fecal neutral or acidic steroid excretion, net tissue accumulation of cholesterol, whole body cholesterol synthesis or gallbladder bile composition. Consistent with these results was the finding that fat quality did not alter either expressed (non-phosphorylated) or total hepatic HMG-CoA reductase activities. The hepatic concentrations of free and esterified cholesterol were significantly increased in corn oil-fed animals, as were cholesterol concentrations in intestine, adipose tissue, muscle and total carcass. Analysis of receptor-mediated LDL binding to isolated hepatic membranes demonstrated that the polyunsaturated corn-oil based diet caused a 1.9-fold increase in receptor levels (P less than 0.02). The data indicate that the hypocholesterolemic effects of dietary polyunsaturated fat in the guinea pig are not attributable to changes in endogenous cholesterol synthesis or catabolism but rather may result from a redistribution of plasma cholesterol to body tissue due to an increase in tissue LDL receptors.  相似文献   

7.
The regulation of hepatic cholesterol and lipoprotein metabolism was studied in the ethinyl estradiol-treated rat in which low density lipoprotein (LDL) receptors are increased many fold. Cholesterol synthesis was reduced at both its diurnal peak and trough by ethinyl estradiol. The diurnal variation in 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was abolished, whereas that for acyl coenzyme A: cholesterol acyltransferase (ACAT) was retained. LDL receptor number did not vary diurnally. Feeding these animals a cholesterol-rich diet for 48 h suppressed cholesterol synthesis and reductase activities to levels similar to those found in cholesterol-fed control animals, but ACAT activity was unaffected. LDL receptors were reduced about 50%. Intravenously administered cholesterol-rich lipoproteins suppressed HMG-CoA reductase and LDL receptors in 2 h but had a variable effect on ACAT activity. Intragastric administration of mevalonolactone reduced reductase and increased acyltransferase activity but had little effect on LDL receptors when given 2 or 4 h before death. Although animals fed a cholesterol-rich diet before and during ethinyl estradiol treatment became hypocholesterolemic, free and esterified cholesterol concentrations in liver were high as was ACAT activity. HMG-CoA reductase was inhibited to levels found in control animals fed the cholesterol-rich diet. LDL receptors were increased to a level about 50% of that reached in animals receiving a control diet and ethinyl estradiol. These data demonstrate that key enzymes of hepatic cholesterol metabolism and hepatic LDL receptors respond rapidly to cholesterol in the ethinyl estradiol-treated rat. Furthermore, estradiol increases LDL receptor activity several fold in cholesterol-loaded livers.  相似文献   

8.
Hyperhomocysteinemia, an elevation of blood homocysteine levels, is a metabolic disorder associated with dysfunction of multiple organs. We previously demonstrated that hyperhomocysteinemia stimulated hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase leading to hepatic lipid accumulation and liver injury. The liver plays an important role in cholesterol biosynthesis and overall homeostasis. HMG-CoA reductase catalyzes the rate-limiting step in cholesterol biosynthesis. Hepatic HMG-CoA reductase is a major target for lowering cholesterol levels in patients with hypercholesterolemia. The aim of the present study was to examine the effect of berberine, a plant-derived alkaloid, on hepatic cholesterol biosynthesis in hyperhomocysteinemic rats and to identify the underlying mechanism. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 4 wk. HMG-CoA reductase activity was markedly elevated in the liver of hyperhomocysteinemic rats, which was accompanied by hepatic lipid accumulation. Activation of HMG-CoA reductase was caused by an increase in its gene expression and a reduction in its phosphorylation (an inactive form of the enzyme). Treatment of hyperhomocysteinemic rats with berberine for 5 days inhibited HMG-CoA reductase activity and reduced hepatic cholesterol content. Such an inhibitory effect was mediated by increased phosphorylation of HMG-CoA reductase. Berberine treatment also improved liver function. These results suggest that berberine regulates hepatic cholesterol biosynthesis via increased phosphorylation of HMG-CoA reductase. Berberine may be therapeutically useful for the management of cholesterol homeostasis.  相似文献   

9.
10.
The relation between carnitine palmitoyltransferase (CPT) activity and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity was investigated. Rats were treated with aminocarnitine or 1-carnitine overnight. In rats, in which CPT activity was inhibited by aminocarnitine, plasma and hepatic triacylglycerol contents were increased 5- to 6-fold. The plasma cholesterol concentration was unchanged, while the hepatic cholesterol content was lowered (-16%). Hepatic cholesterol synthesis, determined by following the incorporation of 14C-acetate and 3H2O into digitonin-precipitable sterols, in liver slices was increased 5- to 7-fold. HMG-CoA reductase activity in liver microsomes was increased to the same extent.  相似文献   

11.
Cheng Y  Tang K  Wu S  Liu L  Qiang C  Lin X  Liu B 《PloS one》2011,6(11):e27437
To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS) on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25 g/kg/d) on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins.  相似文献   

12.
The premise that the intrinsic level of expression of hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase determines the relative sensitivity to the serum cholesterol raising action of dietary cholesterol was examined in 9 strains of rat. For further comparison purposes, hamsters were also examined. The basal expression of hepatic HMG-CoA reductase, extent of feedback regulation by cholesterol, and changes in serum cholesterol levels and the hepatic low-density lipoprotein (LDL) receptor in response to cholesterol challenge were determined in these animals. The Sprague-Dawley, Wistar-Furth, Spontaneously Hypertensive, Lewis, and Wistar-Kyoto rats were all very resistant to dietary cholesterol and exhibited hepatic HMG-CoA reductase activities above 150 pmol / min(-1) / mg(-1). The Buffalo, Brown Norway, and Copenhagen 2331 rats had hepatic HMG-CoA reductase activities below 90 pmol / min(-1) / mg(-1) and had increases in serum cholesterol levels ranging from 12 to 33 mg/dl when given a 4-day, 1% cholesterol challenge. The extent of feedback regulation was reduced to only 3-fold in the Fisher 344 and Brown Norway rats that exhibited significant increases in serum cholesterol levels when given a cholesterol challenge. The Golden Syrian hamsters exhibited the largest increase (197 mg/dl) in serum cholesterol levels in response to dietary cholesterol and the lowest basal expression of hepatic HMG-CoA reductase (3.3 pmol / min(-1) / mg(-1)). Hepatic LDL receptor levels were not significantly decreased by dietary cholesterol in any of the animals. The data from these inbred rats and the hamsters strongly support the conclusion that the animals expressing the highest levels of hepatic HMG-CoA reductase are the most resistant to the serum cholesterol raising action of dietary cholesterol.  相似文献   

13.
We recently postulated that hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase functions as a cholesterol buffer to protect against the serum and tissue cholesterol raising action of dietary cholesterol. This postulate predicts that diminished basal expression of hepatic HMG-CoA reductase results in increased sensitivity to dietary cholesterol. Because diabetic and hypothyroid animals are known to have markedly reduced hepatic HMG-CoA reductase, these animals were selected as models to test our postulate. When rats were rendered diabetic with streptozotocin, their hepatic HMG-CoA reductase activity decreased from 314 to 22 pmol. min(-1). mg(-1), and their serum cholesterol levels increased slightly. When the diabetic animals were challenged with a diet containing 1% cholesterol, their serum cholesterol levels doubled, and their hepatic reductase activity decreased further to 0.9 pmol. min(-1). mg(-1). Hepatic low-density lipoprotein (LDL) receptor immunoreactive protein levels were unaffected in the diabetic rats whether fed cholesterol-supplemented diets or not. In rats rendered hypothyroid by thyroparathyroidectomy, serum cholesterol levels rose from 100 to 386 mg/dl in response to the 1% cholesterol challenge, whereas HMG-CoA reductase activity dropped from 33.8 to 3.4 pmol. min(-1). mg(-1). Hepatic LDL receptor immunoreactive protein levels decreased only slightly in the hypothyroid rats fed cholesterol-supplemented diets. Taken together, these results show that rats deficient in either insulin or thyroid hormone are extremely sensitive to dietary cholesterol largely due to low basal expression of hepatic HMG-CoA reductase.  相似文献   

14.
15.
The concept that hepatic cholesterol synthesis regulates hepatocyte assembly and secretion of apoB-containing lipoproteins remains controversial. The present study was carried out in HepG2 cells to examine the regulation of apoB secretion by the HMG-CoA reductase inhibitor atorvastatin. ApoB accumulation in the media was decreased by 24% and 36% at 10 microm (P < 0.02) and 20 microm (P < 0.01) of atorvastatin, respectively. Atorvastatin inhibited HepG2 cell cholesterol synthesis by up to 96% (P < 0.001) and cellular cholesteryl ester (CE) mass by 54% (P < 0.001). Another HMG-CoA reductase inhibitor, simvastatin, decreased cellular cholesterol synthesis and CE mass by up to 96% (P < 0.001) and 52% (P < 0.001), respectively. However, in contrast to atorvastatin, simvastatin had no effect on apoB secretion. To characterize the reduction in apoB secretion by atorvastatin (10 microm), pulse-chase experiments were performed and the kinetic data were analyzed by multicompartmental modeling using SAAM II. Atorvastatin had no affect on the synthesis of apoB, however, apoB secretion into the media was decreased by 44% (P = 0.048). Intracellular apoB degradation increased proportionately (P = 0.048). Simvastatin (10 microm) treatment did not significantly alter either the secretion or intracellular degradation of apoB, relative to control. The kinetics of apoB degradation were best described by a rapidly and a slowly turning over degradation compartment. The effect of atorvastatin on apoB degradation was largely confined to the rapid compartment. Neither inhibitor affected apoB mRNA concentrations, however, both significantly increased LDL receptor and HMG-CoA reductase mRNA levels. Atorvastatin treatment also decreased the mRNA for the microsomal triglyceride transfer protein (MTP) by 22% (P < 0.02). These results show that atorvastatin decreases apoB secretion, by a mechanism that results in an enhanced intracellular degradation in apoB.  相似文献   

16.
17.
Smith-Lemli-Opitz syndrome (SLOS) is a genetic disorder characterized by low plasma cholesterol and high 7-dehydrocholesterol (7-DHC). Synthesis of cholesterol and 7-DHC and its metabolites is regulated by HMG-CoA reductase, whose activity can be measured by 24-h excretion of its product mevalonate. We devised a simple, non-invasive method for collecting 24-h urine in our subjects. With a background of a very low cholesterol diet, mean mevalonate excretion did not differ between controls and SLOS children, indicating that SLOS subjects have normal HMG-CoA reductase activity. In a short term feeding study, the effects of a high cholesterol diet in SLOS subjects include a significant 55% increase in plasma cholesterol levels and 39% decrease in mevalonate excretion and no change in plasma 7-DHC levels. However, in four SLOS subjects, fed a high cholesterol diet for 2-3 years, plasma cholesterol levels continued to increase, urinary mevalonate excretion remained low and total 7-DHC decreased significantly, likely from decreased total sterol synthesis. Thus, in SLOS subjects, HMG-CoA reductase activity was normal and was subject to normal cholesterol induced feedback inhibition. However, total sterol synthesis in SLOS may still be decreased because of increased diversion of mevalonate into the shunt pathway away from sterol synthesis.  相似文献   

18.
Inbred strains of mice exhibit large genetic variations in hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. A tissue-specific genetic variation between the strains BALB/c and C57BL/6, resulting in about 5-fold higher levels in hepatic reductase activity in strain C57BL/6, was examined in detail. The activity difference between these two strains could be explained entirely by differences in hepatic reductase mRNA levels. In genetic crosses, the variation segregated as a single major Mendelian element. Surprisingly, the mode of inheritance was recessive since F1 mice exhibited the BALB/c levels of enzyme activity. Despite the fact that the rates of hepatic sterol synthesis also differed between the strains by a factor of about five, the altered hepatic reductase expression did not significantly influence plasma lipoprotein levels. The response to a high cholesterol, high fat diet between the strains was remarkably different. Thus, in BALB/c mice, both hepatic reductase activity and mRNA levels were affected only slightly, if at all, by cholesterol feeding, while in strain C57BL/6 mice both were reduced more than 10-fold by cholesterol feeding. Several lines of evidence, including analysis of cis-acting regulatory elements, the nonadditive mode of inheritance, and genetic studies of the HMG-CoA reductase gene locus on mouse chromosome 13, support the possibility that the variation in reductase expression is not due to a mutation of the structural gene but, rather, is determined by a trans-acting factor controlling reductase mRNA levels. The variation provides a striking example, at the molecular level, of the importance of dietary-genetic interactions in the control of cholesterol metabolism.  相似文献   

19.
Hepatic and serum levels of cholesterol precursors were analyzed in rats under basal (control) conditions and when cholesterol synthesis was activated by feeding 1% squalene or 5% cholestyramine. Exogenous squalene stimulated the activity of acyl-coenzyme A:cholesterol acyltransferase (ACAT) but strongly inhibited the activity of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase; cholestyramine did not affect ACAT but increased HMG-CoA reductase several-fold, indicating enhanced production of endogenous squalene. Activation of cholesterol synthesis by the two methods markedly increased the hepatic and serum contents of cholesterol precursor sterols. However, the sterol profiles were clearly different. Thus, exogenous squalene raised most significantly (up to 109-fold) free and esterified methyl sterols, and less so (up to 2-fold) demethylated C27 sterols (desmosterol and cholestenols) and also esterified cholesterol. Activation of endogenous squalene production by cholestyramine was associated with a depletion of esterified cholesterol and by a marked, up to 8-fold, increase of the free demethylated sterol precursor levels, whereas the increase of methyl sterols, up to 5-fold, was less conspicuous than during the squalene feeding. The changes were mostly insignificant for esterified sterols. The altered serum sterol profiles were quite similar to those in liver. Serum cholestenols and especially their portion of total serum precursor sterols were closely correlated with the hepatic activity of HMG-CoA reductase.  相似文献   

20.
Hypercholesterolemia plays an important role in the lipid abnormalities in chronic renal failure (CRF). It is thought to contribute to both a progression of renal failure and atherosclerosis. Despite intensive research, the etiopathogenesis of hypercholesterolemia in CRF patients is still obscure. The present study was designed to evaluate the possible role of cholesterol overproduction in the development of hypercholesterolemia associated with experimental CRF. We found that plasma total cholesterol and cholesterol distributed in VLDL, LDL and HDL concentrations were significantly enhanced in CRF rats. Simultaneously, the rate of liver cholesterol biosynthesis in vivo (measured by determining the incorporation of tritium from tritiated water intraperitoneally injected into cholesterol ), liver microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity and liver HMG-CoA reductase mRNA presence were elevated. Significant increases in activity of liver malic enzyme, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, NADPH-producing enzyme (required for cholesterol synthesis) have also been observed in CRF rats. In conclusion, the increased rate of liver cholesterol biosynthesis due to increase of HMG-CoA reductase and NADPH-producing enzyme gene expression could be one of the possible causes of hypercholesterolemia in CRF animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号