首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat straw was pretreated with saturated lithium chloride in 4 m hydrochloric acid at 50°C for 1 h, then hydrolysed at 100°C for 1 min, to give 84% conversion to monosaccharides. Particle sizes, 150–355 mesh, were easily hydrolysed. Samples pretreated with saturated lithium chloride in 1 m hydrochloric acid at 27°C for 24 h were hydrolysed by Trichoderma viride cellulase (MVA 1284) [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] to give 20–23% monosaccharides for particle sizes of 150–250 mesh, and 82–95.4% for particle sizes of 250–355 mesh.  相似文献   

2.
Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5–10 % (w/w)] and microalgal biomass [20–140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.  相似文献   

3.
酵母发酵玉米秸秆水解液产麦角甾醇应用研究   总被引:1,自引:0,他引:1  
宋公明  刘娇  薛冬桦 《微生物学通报》2008,35(12):1862-1867
生物质是一种可再生资源,生物质发酵可产生高端化工产品.本文主要探讨蒸汽爆破处理玉米秸秆及水解可发酵单糖,考察酵母发酵玉米秸秆糖化液产麦角甾醇的应用研究.实验结果表明:当固液比10%,盐酸浓度1.5%,90℃水解反应3 h,还原糖含量达到53.3%,纤维素转化率79%.发酵工艺参数为玉米秸秆糖化液6.0°Bx,玉米浆4%,pH 7.5,接种量10%,28℃摇床振荡培养32 h,细胞生物量达8.5 g/L,麦角甾醇含量可达2.35%.同时对玉米秸秆发酵产麦角甾醇晶体进行结构表征.  相似文献   

4.
Potato starch hydrolysis products were analyzed for glucose, maltose, higher oligomeric carbohydrates (to a degree of polymerization, dp 11) and 5-hydroxymethylfurfural (HMF) using high-performance liquid chromatography. For quick qualitative and quantitative analyses short glass columns [12] of high efficiency were useful. The hydrolyses were carried out by means of enzymes (e.g. α- and β-amylase) or mineral acids. For the acid degradation procedures hydrochloric acid, sulfuric acid and phosphoric acid of different concentrations (0.1…2.0 N) during times ranging from 5 to 60 min at temperatures ranging from 100 to 140°C were used. Maximum glucose contents (163.4 g/l and 169.3 g/l) were found after 40 to 50 min of hydrolysis in 0.1 N hydrochloric acid heated to 120°C. These values are equivalent to 78.9% or 81.7% glucose yield referred to the initial potato starch amount, respectively. The calculated HMF concentrations were 140 and 180 mg/l.  相似文献   

5.
《Biomass》1987,12(1):71-77
Cellulose from cane bagasse was dissolved in a solution of ZnCl2 and 0·5% hydrochloric acid and heated at 145°C for 10 min, cooled and precipitated with acetone. The cellulose was biodegraded using cellulase from Trichoderma viride. At concentrations of 20% cellulose and 2·5% (w/v) cellulase about 93% of cellulose was hydrolysed to form a solution of 19% glucose and 1% cellobiose after 72 h.  相似文献   

6.
A simple process (the direct-saccharification-of-culms (DiSC) process) to produce ethanol from rice straw culms, accumulating significant amounts of soft carbohydrates (SCs: glucose, fructose, sucrose, starch and β-1,3-1,4-glucan) was developed. This study focused on fully mature culms of cv. Leafstar, containing 69.2% (w/w of dried culms) hexoses from SCs and cellulose. Commercially-available wind-separation equipment successfully prepared a culm-rich fraction with a SC recovery of 83.1% (w/w) from rice straw flakes (54.1% of total weight of rice straw). The fraction was suspended in water (20%, w/w) for starch liquefaction, and the suspension was subjected to a simultaneous saccharification and fermentation with yeast, yielding 5.6% (w/v) ethanol (86% of the theoretical yield from whole hexoses in the fraction) after 24 h fermentation. Thus, the DiSC process produced highly-concentrated ethanol from rice straw in a one vat process without any harsh thermo-chemical pretreatments.  相似文献   

7.
Summary Soil tests, plant performance, and plant tissue analyses were used to study the availability of sulfur to wetland rice in 30 Philippine soils. The critical concentrations of available sulfur by the calcium phosphate, lithium chloride, ammonium acetate, and hydrochloric acid extractions were 9, 25, 30, and 5 mg/kg, respectively. The critical total sulfur limits were 0.11% in the shoot at maximum tillering 0.055% in the straw at maturity, and 0.065% in the grain. The critical N:S ratio was 15 in the shoot at maximum tillering, 14 in the straw at maturity, and 26 in the grain. The critical sulfate-sulfur limit was 150 mg/kg in the shoot at maximum tillering and 100 mg/kg in the straw at maturity. The critical sulfate-sulfur/total sulfur percentage ratio was 15% in the shoot at maximum tillering and the straw at maturity. Plant performance, judged by appearance and yield of dry matter, straw, and grain, was generally poorer in the sulfur deficient soils than in the other soils. Although the calcium phosphate and ammonium acetate methods gave a better correlation between plant performance and available sulfur than the others, all four methods separated sulfur-deficient soils from non-deficient ones. The hydrochloric acid method merits further study because it is simple and versatile.  相似文献   

8.
Rice straw (RS) may serve as a low-cost biomass for the production of biofuels and biochemicals, but its native structure is resistant to enzymatic and microbial deconstruction. Therefore, an efficient pre-treatment method is required to modify crystalline cellulose to a more reactive amorphous form. This work investigated pre-treatments of rice straw involving size reduction (S) followed by either sodium hydroxide (NaOH) or diluted sulfuric acid (H2SO4) and liquid hot water (LHW). The shrinkage of the vascular bundles in the rice straw structure pre-treated with NaOH–LHW–S was higher than that with LHW–S and H2SO4–LHW–S pre-treatments. The highest levels of total fermentative products and residual sugars were obtained at the concentrations of 7.8 ± 0.2 and 2.1 ± 0.3 g/L, respectively, after fermentation by Clostridium cellulolyticum for NaOH–LHW–S pre-treated rice straw at 121 °C for 120 min. Overall, the combined physicochemical pre-treatment of RS led to improved microbial hydrolysis during cellulose degradation at the percentage of 85.5 ± 0.5.  相似文献   

9.
Hemicellulosic hydrolyzate obtained from rice straw was evaluated to determine if it was a suitable fementation medium for the production of xylitol byCandida mogii ATCC 18364. To obtain xylose selectively from rice straw, it is important to establish rapid hydrolysis conditions that yield xylose-rich substrates. The results of hydrolysis experiments indicated that the optimal reaction conditions for the recovery of xylose from rice straw hemicellulose were obtained using a sulfuric acid concentration of 1.5%, a reaction temperature of 130°C, a reaction time of 20 min and a solid to liquid ratio of 1∶10. Because the fermentation of concentrated acid hydrolyzates can be inhibited by compounds present in the raw material or produced during the hydrolysis process, various methods were tested to determine if they could detoxify the hydrolyzates and thus improve xylitol production. The greatest xylitol yield (0.53 g/g) and volumetric productivity (0.38 g/L·h) were obtained when an overlimed hydrolyzate was treated with activated charcoal.  相似文献   

10.
The combination of low severity steam explosion and superfine grinding has been studied with respect to side products generation and enzymatic hydrolysis efficiency. Chemical compositions, fiber characteristics and composed cells contents in the superfine ground product and the ground residue particles produced by superfine grinding were also studied. At the determined parameters using FJM-200 fluidized bed opposed jet mill, 78% superfine ground steam-exploded rice straw (SERS) products with the mean fiber length of 60 μm were obtained, the particles yield was 179% higher than that from the native rice straw (RS). Enzymatic hydrolysis, chemical composition, fiber characteristics and composed cells proportion of the superfine ground SERS product and the ground residue all show great differences. The difference in enzymatic hydrolysis and structural properties indicates that superfine grinding is a good way to fractionate SERS into easily bio-converted part and difficultly hydrolysed part.  相似文献   

11.
Cellulosic feedstocks for bioenergy differ in composition and processing requirements for efficient conversion to chemicals and fuels. This study discusses and compares the processing requirements for three lignocellulosic feedstocks??soybean hulls, wheat straw, and de-starched wheat bran. They were ground with a hammer mill to investigate how differences in composition and particle size affect the hydrolysis process. Enzyme hydrolysis was conducted using cellulase from Trichoderma reesei at 50°C and pH 5. Ground fractions were also subjected to dilute sulfuric acid treatment at 125°C, 15 psi for 30 min prior to cellulase treatment. Reducing particle size of biomass resulted in segregated components of feedstock. Grinding wheat straw to particle size <132 ??m resulted in measured lignin content from 20% to ??5% and reduced hemicellulose content. Reducing lignin content increased the effectiveness of enzyme hydrolysis of wheat straw. Particles sized <132 ??m exhibited the highest soluble sugar release upon hydrolysis for all three feedstocks studied. Hemicellulose digestion improved with dilute sulfuric acid treatment with residual hemicellulose content <5% in all three feedstocks after acid treatment. This enhanced the cellulase action and resulted in approximately 1.6-fold increase in sugar availability in de-starched wheat bran and ??1.5-fold for wheat straw and soybean hulls. Higher sugar availability in wheat bran after acid-mediated enzyme treatment correlated to higher ethanol yields during yeast fermentation compared with soybean hulls and wheat straw.  相似文献   

12.
《Process Biochemistry》2010,45(7):1181-1186
The influence of various low temperature (140 °C) pretreatments, using different acid and alkaline catalysts and different pH values, was studied for enzymatic hydrolysis of wheat straw. The pretreated wheat straw was treated by a standard blend of Celluclast 1.5L and Novozym 188. While pretreatment at pH 1 gave the highest yield of saccharides in the liquid fraction, the solid fraction was more susceptible to enzymatic attack when pretreated at pH 13. The highest yields were obtained after pretreatment with hydrochloric acid at pH 1, and with sodium hydroxide at pH 13 when enzymatic hydrolysis was employed. A two-step pretreatment strategy at pH 1 (hydrochloric acid) and subsequently at pH 13 (sodium hydroxide) released 69% and 95% of the theoretical maximal amounts of glucose and xylose, respectively. Furthermore, this two-step pretreatment removed 68% of the lignin from the straw with only minor losses of monosaccharides and production of only low amounts of inhibitors. Type of catalyst and pH indeed influenced the monosaccharide yields and lignin removal from wheat straw, and need more attention in the choice of pretreatment strategy.  相似文献   

13.
Assessment was made to evaluate the effect of hydrogen peroxide pretreatment on the change of the structural features and the enzymatic hydrolysis of rice straw. Changes in the lignin content, weight loss, accessibility for Cadoxen, water holding capacity, and crystallinity of straw were measured during pretreatment to express the modification of the lignocellulosic structure of straw. The rates and the extents of enzymatic hydrolysis, cellulase adsorption, and cellobiose accumulation in the initial stage of hydrolysis were determined to study the pretreatment effect on hydrolysis. Pretreatment at 60 degrees C for 5 h in a solution with 1% (w/w) H(2)O(2) and NaOH resulted in 60% delignification, 40% weight loss, a fivefold increase in the accessibility for Cadoxen, an one times increase in the water-holding capacity, and only a slight decrease in crystallinity as compared with that of the untreated straw. Improvement on the pretreatment effect could be made by increasing the initial alkalinity and the pretreatment temperature of hydrogen peroxide solution. A saturated improvement on the structural features was found when the weight ratio of hydrogen peroxide to straw was above 0.25 g H(2)O(2)/g straw in an alkaline H(2)O(2) solution with 1% (w/w) NaOH at 32 degrees C. The initial rates and extents of hydrolysis, cellulase adsorption, and cellobiose accumulation in hydrolysis were enhanced in accordance with the improved structural features of straw pretreated. A four times increase in the extent of the enzymatic hydrolysis of straw for 24 h was attributed to the alkaline hydrogen peroxide pretreatment.  相似文献   

14.
The syntheses of 3,4-dinitrophenyl β-d-glucoside, β-cellobioside, β-cellotrioside, and β-cellotetraoside and their use to monitor the purification of two enzymes from a crude commercial cellulase preparation from Trichoderma viride are described. The enzymes isolated are an endo-β-1,4-d-glucan glucanohydrolase (EI) of molecular weight ca. 12 000 which catalysed the release of 3,4-dinitrophenol from 3,4-dinitrophenol-β-cellotetraoside, and an enzyme of molecular weight about 76 000 which catalysed the hydrolysis of 3,4-dinitrophenyl β-d-glucoside (EII) and is probably a cellobiase or exo-β-1,4-d-glucan glucohydrolase. Kinetic parameters are reported for the hydrolyses of 3,4-dinitrophenyl β-cellobioside, β-cellotrioside, and β-cellotetraoside catalysed by enzyme EI. In the presence of cellotriose, cellotetraose, or cellopentaose 3,4-dinitrophenyl β-d-glucoside underwent induced hydrolyses by EI. Similar but faster induced hydrolyses were shown by 3,4-dinitrophenyl β-d-xyloside and 3,4-dinitrophenyl β-d-6-deoxyglucoside; 3,4-dinitrophenyl 6-chloro-6-deoxy-β-d-glucoside and 3,4-dinitrophenyl 6-O-methyl-β-d-glucoside underwent slower induced hydrolyses than the glucoside. p-Nitrophenyl β-d-glucoside also underwent an induced hydrolysis in the presence of cellopentaose and the enzyme EI, but p-nitrophenyl 2-deoxy-β-d-glucoside did not. These results are discussed and compared with the results obtained previously on induced hydrolyses found with lysozyme. Kinetic parameters are reported for the hydrolysis of 3,4-dinitrophenyl and p-nitrophenyl β-d-glucosides catalysed by the enzyme EII. 3,4-Dinitrophenyl 6-deoxy-β-d-glucoside, β-d-xyloside, 6-chloro-6-deoxy-β-d-glucoside, 6-O-methyl-β-d-glucoside and p-nitrophenyl-β-d-galactopyranoside and 2-deoxy-β-d-glucopyranoside were hydrolysed 102 to 103 times slower by EII than the corresponding glucosides, but 3,4-dinitrophenyl 2-acetamido-2-deoxy-β-d-glucoside was only hydrolysed about 25 times slower than 3,4-dinitrophenyl β-d-glucoside. The significance of these results is discussed. EII catalysed the release of 3,4-dinitrophenol from 3,4-dinitrophenyl β-cellobioside, β-cellobioside, and β-cellotetraoside, but these reactions showed induction periods which are consistent with stepwise removal of glucose residues from the oligosaccharide chains before release of the phenol.  相似文献   

15.
《Process Biochemistry》1999,34(5):493-500
Chitosan was partially hydrolysed with 35% hydrochloric acid for 2 h at 80°C and the hydrolysate stored at −20°C after dilution with water to precipitate higher molecular weight (MW) chitosan oligomers. When the hydrolysate was not diluted with water, no precipitate was formed but 7.3% chitosan oligomers were precipitated at a dilution ratio of 1.0 (ml water/ml hydrolysate). The time for precipitation was not significantly changed after storing the hydrolysate at −20°C for 1 day. In addition, the precipitation yield was not significantly influenced by the concentration of HCl used for the hydrolysis except at less than 5.0 (ml HCl/g chitosan). However, the yield of precipitated oligomers changed with partial hydrolysis time. For 0.5 and 2 h hydrolysis, 10.1 and 7.3% of the oligomers were precipitated, respectively, but only 3.1% of the oligomers were obtained after a 4 h reaction. When methanol was added to the hydrolysate, the precipitation yield increased up to 70% but the amounts of lower MW chitosan oligomers in the precipitated oligomers also increased with the increase of higher MW. The precipitated oligomers were mainly composed of pentamers and hexamers.  相似文献   

16.
Crystalline cellulose and cellulosic wastes have been treated with various concentrations of peracetic acid and other reagents at 100°C for various times, washed with water, ethanol and air dried. For each treated cellulose, the degree of enzymatic solubilization was measured with Trichoderma viride cellulase [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4]. Cellulosic wastes such as sunflower stalks, wheat straw and sugar-cane bagasse were solubilized effectively by the enzyme. Delignification of wheat straw with 1% sodium hydroxide and treatment of this straw with peracetic acid enhanced the degree of enzymatic solubilization. Infrared spectra of the untreated and treated cellulosic wastes were recorded.  相似文献   

17.
In the present study, scale-up systems for cellulase production and enzymatic hydrolysis of pre-treated rice straw at high-solid loadings were designed, fabricated and tested in the laboratory. Cellulase production was carried out using tray fermentation at 45 °C by Aspergillus terreus in a temperature-controlled humidity chamber. Enzymatic hydrolysis studies were performed in a horizontal rotary drum reactor at 50 °C with 25 % (w/v) solid loading and 9 FPU g?1 substrate enzyme load using in-house as well commercial cellulases. Highly concentrated fermentable sugars up to 20 % were obtained at 40 h with an increased saccharification efficiency of 76 % compared to laboratory findings (69.2 %). These findings demonstrate that we developed a simple and less energy intensive bench scale system for efficient high-solid saccharification. External supplementation of commercial β-glucosidase and hemicellulase ensured better hydrolysis and further increased the saccharification efficiency by 14.5 and 20 %, respectively. An attempt was also made to recover cellulolytic enzymes using ultrafiltration module and nearly 79–84 % of the cellulases and more than 90 % of the sugars were recovered from the saccharification mixture.  相似文献   

18.
The second taurine-containing lipid (taurolipid B) was found in cells of Tetrahymena thermophila. The lipid accounted for about 1.4% of the total lipids of the cells. The lipid was subjected to mild alkaline and methanolic hydrochloric acid hydrolyses, and the structures of the hydrolysis products were identified by mass and nuclear magnetic resonance spectrometry, as taurine, 2,3,7,13-tetrahydroxystearicacid and non-hydroxy fatty acids. By spin-decoupling analysis in nuclear magnetic resonance spectrometry, the structure of the taurolipid B was identified as 2-(3-acyloxy-2,7,13-trihydroxyoctadecanoyl)aminoethane-sulfonic acid. This structure shows that taurolipid B is a homologue of the first taurine-containing lipid (taurolipid A).  相似文献   

19.
Summary A simple technique of estimating ammonia volatilisation loss from urea applied to soil is described. The soil is incubated with urea, after which hydrochloric acid is added to prevent loss of N from the hydrolysed urea during drying of the soil. The volatilisation loss is estimated by difference between the N recovered from the soil and the urea applied. Recovery studies of urea hydrolysis on 3 Malaysian soils show that the hydrolysis products, consisting of ammonium N and any unreacted urea, can be quantitatively recovered from the soil by this technique, with average recoveries of 95%–97%. A cross-check by 9 laboratories indicated good accuracy and precision in the method. When the open soil method was compared with the direct measurement of ammonia loss in simple volatilisation chambers, it gave much higher results suggesting that the closed system of trapping tended to underestimate volatilisation losses during urea hydrolysis.  相似文献   

20.
The mechanism of dehydration inactivation of Lactobacillus plantarum cells after vacuum-drying above saturated salt solutions was studied. The method used is based on the hypothesis that DNase diffuses into cells with damaged cell membranes/walls and hydrolyses the intracellular DNA. Intact, undamaged cells and cells inactivated by either dehydration or heat treatent were incubated in the presence of DNase. The release of DNA hydrolysis products into the incubation medium was measured. It was shown that dehydration inactivation of L. plantarum, but not thermal inactivation, was associated with clear evidence of membrane damage. The residual glucose-fermenting activity of the dehydrated cells related to the release of hydrolysed DNA in the medium, but there was no such relationship with heat-treated cells. Addition of sorbitol to cells before dehydration increased the residual glucose-fermenting activity after drying and this was associated with a reduced rate of DNA hydrolysis. It is concluded that cell wall and/or cell membrane damage is an important mechanism of dehydration inactivation, but that thermal inactivation (up to 60°C) occurs by a different mechanism.Correspondence to: K. van't Riet  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号