首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Compared with saccharification in the absence of yeast, simultaneous saccharification and fermentation (SSF) using Trichoderma cellulases and Saccharomyces cerevisiae enhanced cellulose hydrolysis rates by 13–30%. The optimum temperature for SSF was 35°C. The requirement for β-d-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) in SSF was lower than for saccharification: maximal ethanol production was attained when the ratio of the activity of β-d-glucosidase to filter paper activity was ~1.0. Ethanol inhibited cellulases uncompetitively, with an inhibition constant of 30.5 gl ?1, but its effect was less severe than that of an equivalent concentration of cellobiose or glucose. No irreversible denaturation of cellulases [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] by ethanol was observed.  相似文献   

2.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

3.
Four β-1,4-glucanases (cellulases) of the cellulolytic bacterium Cellulomonas fimi were purified from Escherichia coli cells transformed with recombinant plasmids. Previous analyses using soluble substrates had suggested that CenA and CenC were endoglucanases while CbhA and CbhB resembled the exo-acting cellobiohydrolases produced by cellulolytic fungi. Analysis of molecular size distributions during cellulose hydrolysis by the individual enzymes confirmed these preliminary findings and provided further evidence that endoglucanase CenC has a more processive hydrolytic activity than CenA. The significant differences between the size distributions obtained during hydrolysis of bacterial microcrystalline cellulose and acid-swollen cellulose can be explained in terms of the accessibility of β-1,4-glucan chains to enzyme attack. Endoglucanases and cellobiohydrolases were much more easily distinguished when the acid-swollen substrate was used.  相似文献   

4.
Because endogenous cellulases have been observed in arthropods, the potential ability to produce cellulose degrading enzymes was examined in the terrestrial isopod Porcellio scaber, an important decomposer of decayed plant material. cDNA fragments encoding portions of two novel endo-β-1,4-glucanase amino acid sequences were amplified by RT-PCR, and the amino acid sequences predicted were affiliated to endo-β-1,4-glucanases from other arthropods, where they cluster with endo-β-1,4-glucanases of decapod crustaceans. Hybridization in situ reveals the hepatopancreas to be the primary site of gene expression and provides direct evidence of the endogenous origin of endo-β-1,4-glucanase in P. scaber. Conservation of catalytically important amino acid residues suggests that both sequences translate into functional cellulases. Cellulolytic activity was detected in hepatopancreatic extract after separation by SDS-PAGE, which included CMC as substrate. This is the first evidence of endogenous cellulases in peracarid crustaceans and gives strong support for the involvement of isopod endo-β-1,4-glucanases in the degradation of cellulose in their diet.  相似文献   

5.
The enzymatic degradation of cellulose is a critical step in the biological conversion of plant biomass into an abundant renewable energy source. An understanding of the structural and dynamic features that cellulases utilize to bind a single strand of crystalline cellulose and hydrolyze the β-1,4-glycosidic bonds of cellulose to produce fermentable sugars would greatly facilitate the engineering of improved cellulases for the large-scale conversion of plant biomass. Endoglucanase D (EngD) from Clostridium cellulovorans is a modular enzyme comprising an N-terminal catalytic domain and a C-terminal carbohydrate-binding module, which is attached via a flexible linker. Here, we present the 2.1-Å-resolution crystal structures of full-length EngD with and without cellotriose bound, solution small-angle X-ray scattering (SAXS) studies of the full-length enzyme, the characterization of the active cleft glucose binding subsites, and substrate specificity of EngD on soluble and insoluble polymeric carbohydrates. SAXS data support a model in which the linker is flexible, allowing EngD to adopt an extended conformation in solution. The cellotriose-bound EngD structure revealed an extended active-site cleft that contains seven glucose-binding subsites, but unlike the majority of structurally determined endocellulases, the active-site cleft of EngD is partially enclosed by Trp162 and Tyr232. EngD variants, which lack Trp162, showed a significant reduction in activity and an alteration in the distribution of cellohexaose degradation products, suggesting that Trp162 plays a direct role in substrate binding.  相似文献   

6.
Compared with saccharification in the absence of yeast, simultaneous saccharification and fermentation (SSF) using Trichoderma cellulases and Saccharomyces cerevisiae enhanced cellulose hydrolysis rates by 13–30%. The optimum temperature for SSF was 35°C. The requirement for β- -glucosidase (β- -glucoside glucohydrolase, EC 3.2.1.21) in SSF was lower than for saccharification: maximal ethanol production was attained when the ratio of the activity of β- -glucosidase to filter paper activity was 1.0. Ethanol inhibited cellulases uncompetitively, with an inhibition constant of 30.5 gl −1, but its effect was less severe than that of an equivalent concentration of cellobiose or glucose. No irreversible denaturation of cellulases [1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] by ethanol was observed.  相似文献   

7.
A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridiumpasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose.  相似文献   

8.
  • 1.1. Termites and cockroaches are excellent models for studying the role of symbionts in cellulose digestion in insects: they eat cellulose in a variety of forms and may or may not have symbionts.
  • 2.2. The wood-eating cockroach, Panesthia cribrata, can be maintained indefinitely, free of microorganisms, on a diet of crystalline cellulose. Under these conditions the RQ is 1, indicating that the cockroach is surviving on glucose produced by endogenous cellulase.
  • 3.3. The in vitro rate at which glucose is produced from crystalline cellulose by gut extracts from P. cribrata and Nasutitermes walkeri is comparable to the in vivo production of CO2 in these insects, clearly indicating that the rate of glucose production from crystalline cellulose is sufficient for their needs.
  • 4.4. In all termites and cockroaches examined, cellulase activity was found in the salivary glands and predominantly in the foregut and midgut. These regions are the normal sites of secretion of digestive enzymes and are either devoid of microorganisms (salivary glands) or have very low numbers.
  • 5.5. Endogeneous cellulases from termites and cockroaches consist of multiple endo-β-1,4-glucanase (EC 3.2.1.4) and β-1,4-glucosidase (EC 3.2.1.21) components. There is no evidence that an exo-β-1,4-glucanase (cellobiohydrolase) (EC 3.2.1.91) is involved in, or needed for, the production of glucose from crystalline cellulose in termites or cockroaches as the endo-β-1,4-glucanase components are active against both crystalline cellulose and carboxymethylcellulose.
  • 6.6. There is no evidence that bacteria are involved in cellulose digestion in termites and cockroaches. The cellulase associated with the fungus garden of M. michaelseni is distinct from that in the midgut; there is little indication that the fungal enzymes are acquired or needed. Lower termites such as Coptotermes lacteus have Protozoa in their hindgut which produce a cellulase(s) quite distinct from that in the foregut and midgut.
  相似文献   

9.
Production of cellulases and β-glucosidase was studied using locally-isolated Aspergillus niger on various cheap sources of cellulose like bagasse, corn corbs, computer cards and sawdust, by solid state fermentation (SSF) and by liquid state fermentation (LSF). Enzyme activities were increased about 30–80% by SSF in comparison with conventional LSF. Enzyme production was further improved by various pretreatments, making cellulosic material easily accessible. The best results were obtained with 5 M NaOH treatment.  相似文献   

10.
Cellulases [see 1,4(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma reesei, Rutgers C30, can be semicontinuously produced in an aqueous two-phase system composed of dextran and poly(ethylene glycol) using Solka Floc BW 200 as substrate. When substrate was intermittently added along with fresh top phase, which replaced the withdrawn top phase containing the produced enzymes, a yield of 1740 U endo-β-d-glucanase/g cellulose and 59.3 FPU/g cellulose was extracted with the top phase. Without fresh substrate added, a yield of 3920 U endo-β-d-glucanase/g cellulose and 127.7 FPU/g cellulose was extracted after five runs.  相似文献   

11.
In the vermicomposting of paper mill sludge, the activity of earthworms is very dependent on dietetic polysaccharides including cellulose as energy sources. Most of these polymers are degraded by the host microbiota and considered potentially important source for cellulolytic enzymes. In the present study, a metagenomic library was constructed from vermicompost (VC) prepared with paper mill sludge and dairy sludge (fresh sludge, FS) and functionally screened for cellulolytic activities. Eighteen cellulase expressing clones were isolated from about 89,000 fosmid clones libraries. A short fragment library was constructed from the most active positive clone (cMGL504) and one open reading frame (ORF) of 1,092 bp encoding an endo-β-1,4-glucanase was indentified which showed 88% similarity with Cellvibrio mixtus cellulase A gene. The endo-β-1,4-glucanase cmgl504 gene was overexpressed in Escherichia coli. The purified recombinant cmgl504 cellulase displayed activities at a broad range of temperature (25–55°C) and pH (5.5–8.5). The enzyme degraded carboxymethyl cellulose (CMC) with 15.4 U, while having low activity against avicel. No detectable activity was found for xylan and laminarin. The enzyme activity was stimulated by potassium chloride. The deduced protein and three-dimensional structure of metagenome-derived cellulase cmgl504 possessed all features, including general architecture, signature motifs, and N-terminal signal peptide, followed by the catalytic domain of cellulase belonging to glycosyl hydrolase family 5 (GHF5). The cellulases cloned in this work may play important roles in the degradation of celluloses in vermicomposting process and could be exploited for industrial application in future.  相似文献   

12.
Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution   总被引:1,自引:0,他引:1  
Jin H  Zha C  Gu L 《Carbohydrate research》2007,342(6):851-858
Untreated cellulose was directly and quickly dissolved in NaOH/thiourea/urea aqueous solution. The mechanism of dissolution was investigated by SEM, WXRD and (13)C NMR. The components of this solvent cannot dissolve cellulose on their own, and the interactions between NaOH and urea, as well as between NaOH and thiourea, play an important role in improving the dissolution of cellulose. Moreover, (13)C NMR spectra proved that NaOH, thiourea, and urea were bound to cellulose molecules, which brings cellulose molecules into aqueous solution to a certain extent and prevents cellulose macromolecules from associating. (13)C NMR spectra of the cellulose solution show that this novel mixture is a direct solvent. Optical microscopy and CP MAS (13)C NMR were used to study the process of dissolution. The results reveal that cellulose is dissolved completely and that cellulose I (cotton linter) first changes to amorphous cellulose chains in solution, and then to cellulose II during regeneration. Moreover, a new, more effective dissolution method is proposed, as confirmed by dynamic rheology measurements.  相似文献   

13.
Sodium phosphate buffer was used to extract cellulases from the plant solids fraction of rumen contents. The mixed cellulase preparation had maximal activity at pH 6.9 and 49°C. The Vmax and the apparent Km for wheaten hay cellulose were 19.8 glucose units/min and 6.35 mg/ml, respectively, and for microcrystalline cellulose (Sigmacell) at the same enzyme concentration, they were 33 glucose units/min and 27.5 mg/ml, respectively. For these assays a glucose unit was defined as nanomoles of glucose plus twice the nanomoles of cellobiose. Consideration of thermodynamic and kinetic data suggested that the hydrolysis of a relatively labile arabino-xylan comprising 3% of the wheaten hay cellulose was dependent on prior removal of the protecting β-1,4-glucose chains at the outer surface of the cellulose preparation. Sequential removal of structural polysaccharides from the plant cell wall rendered the latter more susceptible to cellulase activity. Cellulase activity was stimulated by increasing the concentration of phosphate from 5 to 50 mM. The stimulation was magnified in the presence of cell-free rumen fluid. Cellulase activity was not stimulated by calcium, magnesium, iron, zinc, manganese, copper, or cobalt ions and was unaffected by the chelators ethylenediaminetetraacetic acid and ethyleneglycol-bis (β-aminoethyl ether)-N,N′-tetraacetic acid. O-phenanthroline inhibited activity by 30 to 50%, but this may have been due to nonchelate properties. Anaerobic conditions or thiol protective agents were not essential for either the activity or stability of the cellulases during assay. An ultrafiltrable inhibitor of cellulase activity was detected in cell-free rumen fluid.  相似文献   

14.
Some unicellular organisms are able to encyst as a protective response to a harmful environment. The cyst wall usually contains chitin as its main structural constituent, but in some cases, as in Acanthamoeba, it consists of cellulose instead. Specific cytochemical differentiation between cellulose and chitin by microscopy has not been possible, due to the similarity of their constituent β-1,4-linked hexose backbones. Thus, various fluorescent brightening agents and lectins bind to both cellulose and chitin. We have used a recombinant cellulose-binding protein consisting of two cellulose-binding domains (CBDs) from Trichoderma reesei cellulases linked together in combination with monoclonal anticellulase antibodies and anti-mouse immunoglobulin fluorescein conjugate to specifically stain cellulose in the cysts of Acanthamoeba strains for fluorescence microscopy imaging. Staining was observed in ruptured cysts and frozen sections of cysts but not in intact mature cysts. No staining reaction was observed with the chitin-containing cyst walls of Giardia intestinalis, Entamoeba dispar, or Pneumocystis carinii. Thus, the recombinant CBD can be used as a marker to distinguish between cellulose and chitin. Thirteen of 25 environmental or clinical isolates of amoebae reacted in the CBD binding assay. All 13 isolates were identified as Acanthamoeba spp. Five isolates of Hartmannella and seven isolates of Naegleria tested negative in the CBD binding assay. Whether cyst wall cellulose really is a unique property of Acanthamoeba spp. among free-living amoebae, as suggested by our findings, remains to be shown in more extensive studies.  相似文献   

15.
The production of biofuels from lignocellulosic biomass appears to be attractive and viable due to the abundance and availability of this biomass. The hydrolysis of this biomass, however, is challenging because of the complex lignocellulosic structure. The ability to produce hydrolytic cellulase enzymes in a cost-effective manner will certainly accelerate the process of making lignocellulosic ethanol production a commercial reality. These cellulases may need to be produced aerobically to generate large amounts of protein in a short time or anaerobically to produce biofuels from cellulose via consolidated bioprocessing. Therefore, it is important to identify a promoter that can constitutively drive the expression of cellulases under both aerobic and anaerobic conditions without the need for an inducer. Using lacZ as reporter gene, we analyzed the strength of the promoters of four genes, namely lacZ, gapA, ldhA and pflB, and found that the gapA promoter yielded the maximum expression of the β-galactosidase enzyme under both aerobic and anaerobic conditions. We further cloned the genes for two cellulolytic enzymes, β-1,4-endoglucanase and β-1,4-glucosidase, under the control of the gapA promoter, and we expressed these genes in Escherichia coli, which secreted the products into the extracellular medium. An ethanologenic E. colistrain transformed with the secretory β-glucosidase gene construct fermented cellobiose in both defined and complex medium. This recombinant strain also fermented wheat straw hydrolysate containing glucose, xylose and cellobiose into ethanol with an 85% efficiency of biotransformation. An ethanologenic strain that constitutively secretes a cellulolytic enzyme is a promising platform for producing lignocellulosic ethanol.  相似文献   

16.
Anstract Effect of NaOH pretreatment on the biodegradation of corn cobs for the production of cellulase and protein was studied usingAspergillus niger. Delignification of cobs with NaOH remarkaby increased the production of cellulase and protein. Treatment of cobs with 2% NaOH was found to be the best with respect to their susceptibility to biodegradation for maximum production of cellulose 1,4-β-cellobiosidase, cellulase, β-glucosidase soluble protein and crude protein; this also led to the highest protein recovery, maximum cellulose utilization and also for the maximum degradation of substrate.  相似文献   

17.
N-2′-Acetoxybenzoyl (aspirin) derivatives (degree of substitution 0·35–1·00) of chitosan, N-desulphated heparin and 2-amino-2-deoxy-d-glucose were prepared by methods that gave yields in the range 65–86%. The salicylate of chitosan was isolated with a 98% yeild. Aspirin or salicylic acid was released much more slowly from N-(2′-acetoxybenzoyl)-chitosan than from the salicylate of chitosan, and much faster at 37°C in 0·1 m NaOH solution than in 2% aqueous acetic acid solution. Salicylic acid was isolated from the dialysate (0·1 m NaOH solution) of N-(2′-acetoxybenzoyl)-chitosan.  相似文献   

18.
The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-β-1,4-glucanase we named TcEG1 (T. castaneum endoglucanase 1). Sequence analysis of a full-length TcEG1 cDNA clone (1356 bp) revealed sequence homology to enzymes in glycosyl hydrolase family 9 (GHF9), and verified presence of a change (Gly for Ser) in the conserved catalytic domain for GHF9 cellulases. This TcEG1 cDNA clone was predicted to encode a 49.5 kDa protein with a calculated pI of 5.39. Heterologous expression of TcEG1 in Drosophila S2 cell cultures resulted in secretion of a 51-kDa protein, as determined by Western blotting. The expressed protein was used to characterize TcEG1 enzymatic activity against two cellulose substrates to determine its specificity and stability. Our data support that TcEG1 as a novel endo-β-1,4-glucanase, the first functional characterization of a cellulase enzyme derived from an insect genome with potential applications in the biofuel industry due to its high relative activity at alkaline pH.  相似文献   

19.
Regenerated films were successfully prepared from cellulose/NaOH/urea solution by coagulating with water at temperature from 25 to 45 °C. The results of solid 13C NMR, wide angle X-ray diffraction, scanning electron microscopy (SEM) and tensile testing revealed that the cellulose films possessed homogeneous structure and cellulose II crystalline, similar to that prepared previously by coagulating with 5 wt% H2SO4. By changing the coagulation temperature from 25 to 45 °C, tensile strength of the films was in the range of 85-139 MPa. Interestingly, the RC35 film coagulated at 35 °C exhibited the highest tensile strength (σb = 139 MPa). The inclusion complex associated with cellulose, NaOH and urea hydrates in the cellulose solution were broken by adding water (non-solvent), leading to the self-association of cellulose to regenerate through rearrangement of the hydrogen bonds. This work provided low-cost and “green” pathway to prepare cellulose films, which is important in industry.  相似文献   

20.
Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium. Cellulose production was remarkably reduced and small amounts of particulate material were accumulated in the culture of a cmcax-disrupted G. xylinus strain (F2-2). The particulate material was shown to contain cellulose by both solid-state 13C nuclear magnetic resonance analysis and Fourier transform infrared spectroscopy analysis. Electron microscopy revealed that the cellulose fibrils produced by the F2-2 cells were highly twisted compared with those produced by control cells. This hypertwisting of the fibrils may reduce cellulose synthesis in the F2-2 strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号