首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A DNA fragment containing both the Escherichia coli d-xylose isomerase (d-xylose ketol-isomerase, EC 5.3.1.5) gene and the d-xylulokinase (ATP: d-xylulose 5-phosphotransferase, EC 2.7.1.17) gene has been cloned on an E. coli plasmid. The d-xylose isomerase gene was separated from the d-xylulokinase gene by the construction of a new deletion plasmid, pLX7. The d-xylose isomerase gene cloned on pLX7 was found still to be an intact gene. The precise location of the d-xylose isomerase gene on the plasmid pLX7 was further determined by the construction of two more plasmids, pLX8 and pLX9. This is believed to be the first d-xylose isomerase gene that has been isolated and extensively purified from any organism. d-Xylose isomerase, the enzyme product of the d-xylose isomerase gene, is responsible for the conversion of d-xylose to d-xylulose, as well as d-glucose to d-fructose. It is widely believed that yeast cannot ferment d-xylose to ethanol primarily because of the lack of d-xylose isomerase in yeast. d-Xylose isomerase (also known as d-glucose isomerase) is also used for the commercial production of high-fructose syrups. The purification of the d-xylose isomerase gene may lead to the following industrial applications: (1) cloning and expression of the gene in yeast to make the latter organism capable of directly fermenting d-xylose to ethanol, and (2) cloning of the gene on a high-copy-number plasmid in a proper host to overproduce the enzyme, which should have a profound impact on the high-fructose syrup technology.  相似文献   

2.
d-Xylose has been isomerized by immobilized d-glucose isomerase (EC nomenclature is now d-xylose isomerase, d-xylose ketol-isomerase, EC 5.3.1.5; EC 5.3.1.18 is a deleted EC entry). Temperature has a profound influence on the equilibrium concentration of d-xylulose. When 1 md-xylose was isomerized in the presence of various concentrations of borate, maximum conversion (80%) was observed at 0.2 m sodium tetraborate. Temperature (40–69°C) and pH (6.0–7.5) had an insignificant effect on the equilibrium when borate was present. d-Xylose (0.5 m) was isomerized by d-glucose isomerase in the presence of various concentrations of sodium tetraborate (0.0125–0.25 m). Based on the initial rate of ethanol production and the fraction of total sugar converted into ethanol after 24 h of yeast fermentation, an optimum tetraborate concentration of 0.05 m was determined for both isomerization and fermentation. At an acidic pH, the rate of fermentation was faster than at neutral pH when borate was included in the d-xylose—d-xylulose system. Acid hydrolysate of bagasse hemicellulose could not be fermented at a pH lower than 5. Therefore, a compromise condition, pH 6.0, was chosen for fermentation.  相似文献   

3.
The addition of germanate anions to high d-glucose feed syrups, which are passed through an immobilized d-glucose isomerase [xylose isomerase, d-xylose ketol-isomerase, EC 5.3.1.5] column, displaces a ca. 50/50 d-glucose/d-fructose mixture (produced in the absence of germanate) in favour of d-fructose. A maximum conversion of 94% from a d-glucose feed (40% w/v) is obtained with no detrimental effect on the enzyme. This is related to the germanate: sugar ratio. Optimization of the d-fructose yield from d-glucose germanate substrate has been carried out. The effects due to temperature, pH and concentration were taken into consideration. Confirmation of the quantitative identification of the d-fructose was obtained by isotope dilution analysis. The theory behind the displacement is also discussed, and shows close agreement with practical results.  相似文献   

4.
The complexing parameters of d-glucose and d-fructose with germanate, derived from various forms of germanium dioxide, have been studied under the conditions pertaining to the d-glucose isomerase (d-xylose isomerase, d-xylose ketol-isomerase, EC 5.3.1.5) reaction. The interaction of germanate with d-glucose and d-fructose at various pH values has been investigated by means of optical rotation methods. The effects of temperature and concentration on the extent of complex formation are reported. The results are used to predict suitable conditions for the enhancement of d-fructose yield in the reaction of d-glucose with this enzyme.  相似文献   

5.
The enzymatic and coupled d-xylose isomerase/d-sorbitol dehydrogenase assay is a rapid and specific method, permitting accurate quantification of d-xylose isomerization and of d-xylose. The method is based on the isomerization of d-xylose to d-xylulose, followed by reduction of the latter to xylitol by commercially available d-sorbitol dehydrogenase and NADH. The application of this one-step method cannot be extended to d-glucose isomerization since the conditions for a valid coupled assay are not fulfilled. For quantification of d-glucose isomerization, the two-step procedure with d-sorbitol dehydrogenase is recommended. Kinetic parameters for d-xylose and d-glucose using d-xylose isomerase from Streptomyces violaceoruber are reported. The results are compared with the widely used colorimetric cysteine-carbazole method.  相似文献   

6.
A hydrogen peroxide permselective membrane with asymmetric structure was prepared and d-glucose oxidase (EC 1.1.3.4) was immobilized onto the porous layer. The activity of the immobilized d-glucose oxidase membrane was 0.34 units cm?2 and the activity yield was 6.8% of that of the native enzyme. Optimum pH, optimum temperature, pH stability and temperature stability were found to be pH 5.0, 30–40°C, pH 4.0–7.0 and below 55°C, respectively. The apparent Michaelis constant of the immobilized d-glucose oxidase membrane was 1.6 × 10?3 mol l?1 and that of free enzyme was 4.8 × 10?2 mol l?1. An enzyme electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized d-glucose oxidase membrane. The enzyme electrode responded linearly to d-glucose over the concentration 0–1000 mg dl?1 within 10 s. When the enzyme electrode was applied to the determination of d-glucose in human serum, within day precision (CV) was 1.29% for d-glucose concentration with a mean value of 106.8 mg dl?1. The correlation coefficient between the enzyme electrode method and the conventional colorimetric method using a free enzyme was 0.984. The immobilized d-glucose oxidase membrane was sufficiently stable to perform 1000 assays (2 to 4 weeks operation) for the determination of d-glucose in human whole blood. The dried membrane retained 77% of its initial activity after storage at 4°C for 16 months.  相似文献   

7.
Glucose isomerase (D -xylose ketol-isomerase EC 5.3.1.5) from Bacillus Coagulans was partially purified and immobilized by adsorption to anion exchangers. The highest activities were obtained when the enzyme was adsorbed to DEAE-cellulose. On immobilization to DEAE-cellulose the measured optimum pH value for enzyme activity shifted from 7.2 to 6.8. There was no appreciable difference between the heat stabilities of soluble and immobilized enzyme. The Km app values for the immobilized enzyme were found to be 0.25M in the presence of 0.01M Mg2+ and 0.19M with 0.005M Mg2+, while those enzyme were 0.11 and 0.17M, re spectively. Under conditions of contimuous of D -glucose, a decrease of activity with time was observed, but this decrease was less at a low Mg2+ concentration and was affected by column geometry. There were no appreciable diffusional limitation effects in packed-bed columns.  相似文献   

8.
The Escherichia coli d-xylose isomerase (d-xylose ketol-isomerase, EC 5.3.1.5) gene, xylA, has been cloned on various E. coli plasmids. However, it has been found that high levels of overproduction of the d-xylose isomerase, the protein product of the xylA gene, cannot be accomplished by cloning the intact gene on high copy-number plasmids alone. This is believed to be due to the fact that the expression of the gene through its natural promoter is highly regulated in E. coli. In order to overcome this, the xylA structural gene has been fused with other strong promoters such as tac and lac, resulting in the construction of a number of fused genes. Analysis of the E. coli transformants containing the fused genes, cloned on high copy-number plasmids, indicated that a 20-fold overproduction of the enzyme can now be obtained. It is expected that overproduction of the enzyme in E. coli can still be substantially improved through additional manipulation with recombinant DNA techniques.  相似文献   

9.
The major components of cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and d-xylanase (see 1,4-β-d-xylan xylanohydrolase, EC 3.2.1.8) complexes have been immobilized on glass beads activated by 3-aminopropyltriethoxysilane or 3-glycidoxypropyltrimethoxysilane. The final preparations contained over 20 mg protein g?1 glass beads. The activity retained was 71.6–98.1% for cellulase complexes and 81–100% for d-xylanase complexes. The immobilization of the enzymes spread their optimum pH range. Cellulose and d-xylan were quantitatively hydrolysed by the immobilized enzymes. The major reaction products were identified as a d-glucose and d-xylose respectively.  相似文献   

10.
Quinoprotein glucose dehydrogenase (GDH; EC 1.1.99.17) was partially purified from cell-free extracts of Acinetobacter calcoaceticus LMD79.41. The enzyme oxidized monosaccharides (d-glucose, d-allose, 2-deoxy-d-glucose, d-galactose, d-mannose, d-xylose, d-ribose and l-arabinose) as well as disaccharides (d-lactose, d-maltose and d-cellobiose).Intact cells of A. calcoaceticus LMD79.41 also oxidized these monosaccharides, but not the disaccharides.The difference in substrate specificity can not be explained by impermeability of the outer membrane for disaccharides, since right-side-out membrane vesicles did not oxidize disaccharides either. Destruction of the cytoplasmic membrane strongly affected the catalytic properties of GDH. Not only did the affinity towards some monosaccharides change substantially, but disaccharides also became good substrates upon solubilization of the enzyme. Thus, at least in A. calcoaceticus LMD79.41, the oxidation of disaccharides by GDH can be considered as an in vitro ‘artefact’ caused by the removal of the enzyme from its natural environment.  相似文献   

11.
The fermentation of carbohydrates and hemicellulose hydrolysate by Mucor and Fusarium species has been investigated, with the following results. Both Mucor and Fusarium species are able to ferment various sugars and alditols, including d-glucose, pentoses and xylitol, to ethanol. Mucor is able to ferment sugar-cane bagasse hemicellulose hydrolysate to ethanol. Fusarium F5 is not able to ferment sugar-cane bagasse hemicellulose hydrolysate to ethanol. During fermentation of hemicellulose hydrolysates, d-glucose was utilized first, followed by d-xylose and l-arabinose. Small amounts of xylitol were produced by Mucor from d-xylose through oxidoreduction reactions, presumably mediated by the enzyme aldose reductase1 (alditol: NADP+ 1-oxidoreductase, EC 1.1.1.21). For pentose fermentation, d-xylose was the preferred substrate. Only small amounts of ethanol were produced from l-arabinose and d-arabitol. No ethanol was produced from l-xylose, d-arabinose or l-arabitol.  相似文献   

12.
The reported conversion of d-arabinose 5-phosphate to d-ribose 5-phosphate and other intermediates of the pentose phosphate pathway was investigated. Two new solvent systems to separate the two aldopentose phosphates on paper and a method using chromatography on a column of dihydroxyboryl-cellulose were developed. No evidence for their interconversion could be obtained. d-Arabinose 5-phosphate did not serve as an acceptor for transketolase from bakers' yeast, Candida utilis, or rat liver but behaved as an inhibitor. d-Glucose 6-phosphate acted both as an acceptor and as an inhibitor of the reaction with d-ribose 5-phosphate as acceptor. d-Arabinose 5-phosphate was not converted into ribose 5-phosphate, ketopentose phosphate, triose phosphate, or a heptulose phosphate by rat muscle or rat liver enzymes. Hydroxypyruvate is suggested not to be a substrate for rat liver transketolase.  相似文献   

13.
In Drosophila virilis salivary glands the in vitro activities of enzymes involved in the glucosamine pathway were examined during the third larval instar and in the prepupa. While glutamine-fructose-6-phosphate aminotransferase (EC 5.3.1.19) becomes inactive at the time of puparium formation, glucosamine-6-phosphate isomerase (EC 5.3.1.10) and glucosamine-6-phosphate N-acetyltransferase (EC 2.3.1.3) show maximal activities in the prepupal gland. The activity of UDP-N-acetylglucosamine pyrophosphorylase (EC 2.7.7.23) may also decrease prior to puparium formation. Incubation of larval and prepupal glands in medium containing [3H]glucose + [14C]-uridine or [14C]glucosamine and subsequent separation of intermediates of the glucosamine pathway by chromatographic procedures reveal that the capacity of the glands to incorporate the isotopes into these intermediates decreases significantly at the time of puparium formation. The results suggest that in D. virilis salivary glands the formation of aminosugars is mainly controlled by the activities of the two enzymes glutamine-fructose-6-phosphate aminotransferase and UDP-N-acetylglucosamine pyrophosphorylase.  相似文献   

14.
The stability of the ?1-dehydrogenation system of Arthrobacter simplex immobilized in calcium alginate has been studied. A high stability was related to the ability of the cells to utilize a carbon source such as d-glucose or steroid. Inhibition of de novo protein synthesis reduced the ?1-dehydrogenase [3-oxosteroid: acceptor) ?1-oxidoreductase, EC 1.3.99.4] stability of the immobilized cells. The operational stability of immobilized cell preparations in the presence of the steroid degradation inhibitor, α,α-dipyridyl, could not be improved significantly by supplementing steroid substrate suspensions with either d-glucose or yeast extract.  相似文献   

15.
The anomerase (1-epimerase) activity of phosphoglucose isomerase (d-glucose 6-phosphate ketol-isomerase EC 5.3.1.9) has been studied. The pH-Vmax profile, assayed by two different methods, shows a dependence on two ionizable groups in the enzyme with pK values of 7.0 and 9.3 at 0 °C. Additionally, an unusual reversal of the basic leg of the normal profile to yield a large increase in Vmax is observed above pH 9.5. Deuterium solvent isotope effects of Vmax(H2O)Vmax(D2O) = 1.39 and 2.07 are observed for isomerase and anomerase activities respectively. An anomerase mechanism similar to noncatalyzed anomerization is postulated with a discussion of the catalytic groups involved.  相似文献   

16.
The soluble, lignin-carbohydrate complex (LCC) from the rumen fluid of steers fed a diet of pure spear grass (Heteropogon contortus) has been purified by gel filtration. The purified LCC contained 7.4% of carbohydrate which, on hydrolysis, gave d-glucose, d-xylose, l-arabinose, l-rhamnose, and traces of d-galactose and d-mannose. The structure of the LCC was examined by methylation analysis, using g.l.c.-m.s. for the unequivocal classification of the sugar derivatives. d-Glucose, d-xylose, and l-rhamnose were shown to be glycosidically linked to lignin. Some of the d-glucosyl residues carry other (1→4)-linked d-glucose units, and some of the d-xylosyl residues bear other (1→4)-linked d-xylose units and (1→3)-linked l-arabinofuranosyl groups. The major carbohydrate component is a single d-glucopyranosyl group. The LCC was subjected to various chemical treatments in an investigation of the chemical nature of the bonding between lignin and the carbohydrates. d-Glucose could be enzymically hydrolyzed from the LCC, but only with a very high concentration of β-d-glucosidase. The presence of lignin in rumen LCC has been confirmed by nitrobenzene oxidation, vanillin and syringaldehyde being identified by g.l.c.-m.s. as oxidation products from both the original spear grass and the LCC.  相似文献   

17.
Wild type strains of Bacillus subtilis produced sedoheptulose from d-ribose but not from d-glucose, B. subtilis mutants deficient in transketolase produced sedoheptulose when d-glucose was used as a carbon source. The addition of d-ribose to the culture medium increased the amount of sedoheptulose accumulated, reaching about 20 mg/ml of culture broth. The mutant strains reverted to wild type strains at a high frequency during cell growth, and therefore the accumulation of sedoheptulose was caused by the genetic instability of the mutant: d-ribose formed from d-glucose by the mutant strain was converted into sedoheptulose by revertant cells that appeared during cultivation.  相似文献   

18.
A gene bank of the d-xylose utilizing, cellulolytic Xanthomonas (XA1-1) DNA, inserted into the Hind III site of pKT230, was screened for clones which encoded d-xylose isomerase. One clone (pND70) was identified which complemented d-xylose isomerase negative mutants of Escherichia coli and this clone contained an insert of XA1-1 DNA of approximately 15 kb. Enzyme assays showed that pND70 appeared to encode d-xylose permease, and xylulose kinase in addition to d-xylose isomerase. Specific activities of all 3 enzymes from E. coli JA200 (pND70) grown in d-xylose were double those detected in XA1-1 when also grown on d-xylose.  相似文献   

19.
Glucose-6-phosphate isomerase shows a biphasic decay pattern during red blood cell aging, which is very fast during the first part of cell's life span in circulation. This decay is not due to accumulation of inactive enzyme molecules, as shown by immunological studies, but is accompanied by the formation of secondary isozymes (i.e., chemically modified forms). Electrophoretic and ion-exchange chromatographic experiments show that glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9) consists of only one isozymic form in young erythrocytes but is present in two components, with different electric charge, in mature and old cells. This secondary isozyme is more stable to heat treatment and is inactivated by IgG anti-glucose-6-phosphate isomerase with a lower affinity than the native isozyme. In vitro incubation of homogeneous human glucose-6-phosphate isomerase under conditions known to produce enzyme deamination does not reproduce the isozymic pattern found in erythrocytes, suggesting that one or more mechanisms other than those previously described to explain glucose-6-phosphate isomerase microheterogeneity occur in the human erythrocyte.  相似文献   

20.
Glucose isomerase (EC 5.3.1.5) produced from Streptomyces flavogriseus was purified by fractionation with (NH4)2SO4 and chromatography on diethylaminoethyl (DEAE)-cellulose and DEAE-Sephadex A-50 columns. The purified enzyme was homogeneous as shown by ultracentrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Benzyl DEAE-cellulose, triethylaminoethyl-cellulose, and DEAE-cellulose were effective in the immobilization of partially purified glucose isomerase. Several differences in properties were found between purified soluble enzyme, immobilized enzyme (DEAE-cellulose-glucose isomerase), and heat-treated whole cells. Glucose and xylose served as substrate for the enzyme. Whole cells had the highest Km values for glucose and xylose; the soluble enzyme had the lowest values. The optimum temperature for activity of the soluble and immobilized enzymes was 70°C; that for whole cells was 75°C. The pH optimum for the three enzyme preparations was 7.5. Magnesium ion or Co2+ was required for enzyme activity; an addition effect resulted from the presence of both Mg2+ and Co2+. The enzyme activity was inhibited by Hg2+, Ag+, or Cu2+. The conversion ratio of the enzyme for isomerization was about 50%. The soluble and immobilized enzymes showed a greater heat stability than whole cells. The soluble enzyme was stable over a slightly wider pH (5.0 to 9.0) range than the immobilized enzyme and whole cells (pH 5.5 to 9.0). The molecular weight of the enzyme determined by the sedimentation equilibrium method was 171,000. A tetrameric structure for the enzyme was also indicated. After operating at 70°C for 5 days, the remaining enzyme activity of the immobilized enzyme and whole cells, which were used for the continuous isomerization of glucose in a plug-flow type of column in the presence of Mg2+ and Co2+, was 75 and 55%, respectively. Elimination of Co2+ decreased operational stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号