首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhu Y  Cheng G  Dong S 《Biophysical chemistry》2002,97(2-3):129-138
Secondary and tertiary or quaternary structural changes in hemoglobin (HB) during an electroreduction process were studied by in situ circular dichroism (CD) spectroelectrochemistry with a long optical path thin-layer cell. By means of singular value decomposition least-squares analysis, CD spectra in the far-UV region give two similar alpha components with different CD intensity, indicating slight denaturation in the secondary structures due to the electric field effect. CD spectra in the Soret band show a R-->T transition of two quaternary structural components induced by electroreduction of the heme, which changes the redox states of the center ion from Fe3+ to Fe2+ and the co-ordination number from 6 to 5. The double logarithmic analysis shows that electroreduction of hemoglobin follows a chemical reaction with R-->T transition. Some parameters in the electrochemical process were obtained: formal potential, E0'=-0.167 V; electrochemical kinetic overpotential, deltaE0=-0.32 V; standard electrochemical reaction rate constant, k0=1.79 x 10(-5) cm s(-1); product of electron transfer coefficient and electron number, alphan=0.14; and the equilibrium constant of R-->T transition, Kc=9.0.  相似文献   

2.
3.
Zhu Y  Cheng G  Dong S 《Biophysical chemistry》2000,87(2-3):103-110
Electrochemically induced three conformational transitions of calf thymus DNA from B10.4 to Z10.2-DNA and from B10.2 to B10.4 and to C-DNA in 10 mM phosphate buffer solution (pH 7.21) at glassy carbon electrode are found and studied by in situ circular dichroism (CD) thin layer spectroelectrochemistry with singular value decomposition least square (SVDLS) analysis. It indicates that the so-called B10.2 form and the C-form of DNA may be composed of B10.4 and left-A DNA and of B10.4 and right-A DNA, respectively. The irreversible electrochemical reduction of adenine and cytosine groups in the DNA molecule is studied by UV-Vis spectroelectrochemistry. Some electrochemical parameters alpha n = 0.17, E0' = -0.70 V (vs. Ag/AgCl), and the standard heterogeneous electron transfer rate constant, k0 = 1.8 x 10(-5) cm s(-1), are obtained by double logarithmic analysis and non-linear regression.  相似文献   

4.
Alkaline pH induced conformational changes in different domains of bovine serum albumin were studied by using domain specific ligands: chloroform, bilirubin and diazepam for domains I, II and III respectively. The effect of alkaline pH on the secondary structure of BSA was monitored by far-UV CD in the range 250 nm to 200 nm. The pH profiles of BSA in the alkaline region showed a two-step change, one corresponding to N<-->B transition (pH 7.5 to 9.0) and the other to B --> U (pH 11.0 to 13.5). Binding of chloroform decreased continuously on increasing pH, whereas binding of diazepam, remained unchanged up to pH 9 and decreased thereafter. In contrast, binding of bilirubin gradually increased up to pH 11.0 and decreased thereafter reaching a value similar to one obtained with native BSA at pH 11.5. Above pH 11.5, bilirubin binding decreased and was abolished completely at pH 12.5. In the pH region 7.5 to 11.0, a continuous decrease in chloroform binding (pH 7.5 to 9.5) and a late decrease in diazepam binding (pH 9.5 to 11.0) suggested major loss of native conformation of domain I followed by domain III during alkaline induced unfolding of BSA. However, a significant increase in bilirubin binding showed a favorable conformational rearrangement in domain II in this pH region (pH7.5 to 11.0). Further, a nearly complete abolishment of bilirubin binding to BSA and significant loss of secondary structure around pH 12.5 indicated that domain II was more resistant to alkaline pH and unfolds only at extreme alkalinity. Taken together, these data suggest that unfolding of three domains of BSA follow the following order of susceptibility towards alkaline denaturation of BSA domain I>domain III>domain II.  相似文献   

5.
The circular dichroic (CD) spectra of natural DNAs (from Cl. perfringens, T2 phage, calf thymus, E. coli, and M. lysodeikticus) as well as duplexes of synthetic DNAs (poly(dA) X poly(dT), poly(dA-dT), and poly(dG-dC] were measured in water-ethanol mixtures with 0.3 mM NaCl. A conformational change from the B to the A form was observed for the natural DNAs on adding ethanol. The ethanol concentration that induces the transition and the extent of the change in the CD spectrum are different for the five natural DNAs depending on their GC contents. The higher the GC content is, the more easily the transition to the A form takes place. The results indicate that the GC content of a DNA is an important factor for induction of the B-A transition. The results for the synthetic DNAs show that their properties cannot be inferred by simple extrapolation of those of natural DNAs. Coexisting ions and the molecular weight of a DNA were also found to affect the induction of the B-A transition.  相似文献   

6.
Vibrational circular dichroism (VCD) spectroscopy has been used for the first time to investigate the thermal denaturation of proteins in H(2)O solutions. Films prepared from heated aqueous solutions were used for these investigations. A well-known alpha-helical protein, bovine serum albumin (BSA), is used for this first study. Both VCD and infrared absorption results obtained for BSA films indicate that the heat treatment of BSA induces significant amounts of beta-sheet structure and that the denaturation process is irreversible. To verify the irreversible nature of thermal denaturation, optical rotation was also measured as a function of temperature in both heating and cooling cycles. These results also indicate that thermal denaturation of BSA in solution is irreversible. This study establishes the usefulness of films for VCD investigations and offers new avenues for VCD studies on biologically important systems.  相似文献   

7.
The interaction between a thyroid hormone metabolite, 3-monoiodo-L-thyronine (3-T1) and bovine serum albumin (BSA) was investigated by using the CD method. An enhanced CD band was observed at the absorption wavelength region of 3-T1 around 293 nm suggesting the binding of 3-T1 to the BSA molecule. The ellipticity at 293 nm was measured at various molar ratios of 3-T1 to BSA, and the apparent binding constant and the maximum number of binding sites could be estimated as Kapp = 8.85 +/- 1.07 X 10(4) M-1 and n = 23.8 +/- 0.9 respectively. The CD of a mixture of BSA, 3-T1 and thyroxine (T4) was also studied at various pH's. The pH profile of the two characteristic CD bands at 293 nm and 320 nm, attributed to bound 3-T1 and T4, suggested that the optimum binding condition of 3-T1 was attained at alkaline pH of around 9, while that of T4 was attained over a wide pH range between 5-10. A significant role of the ionized 4'-hydroxyl group of 3-T1 in the binding reaction with BSA is also suggested.  相似文献   

8.
L Wang  T A Keiderling 《Biochemistry》1992,31(42):10265-10271
The vibrational circular dichroism (VCD) spectra of several natural DNAs as well as tRNA, poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) are reported for the base deformation modes in the IR region from 1700 to 1550 cm-1 for the polymers in D2O as well as in high alcohol dehydrating conditions. Spectra of both the B- and A-forms were identified. The A-form DNA VCD, not previously reported, has characteristics that can be found in the VCD spectra of RNAs as would be expected from the similarity of their structures. The VCD is sequence-dependent. Under the dehydrating conditions studied, poly(dA-dT)poly(dA-dT),poly(dA).poly(dT), and a high-A-T fraction natural DNA had a different bandshape from the other DNAs, which was similar to that of poly(rA).poly(rU). Poly(dG-dC).poly-(dG-dC) did not form an A-form in high-alcohol conditions but instead had a VCD spectrum much like that of its high-salt-induced Z-form. Qualitative differences seen experimentally between A- and B-form DNA VCD were suggested by the differences in the coupled oscillator VCD calculated for the two forms.  相似文献   

9.
The circular dichroism of bovine serum albumin in divalent salt solutions was investigated. The salts selected were magnesium chloride and calcium chloride. Their effects on the secondary and tertiary structures of the protein were compared with that of lithium chloride. It is well known that the elements Ca, Mg, and Li have many properties in common. The results show the similarity of their ions in the capacity of deforming protein, in spite of their characteristic pharmacological functions.  相似文献   

10.
The thermal denaturation of bovine fibrinogen has been investigated using differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. Differential scanning calorimetry measurements were carried out while changing the scan-rate. The transition at 57 degrees C was found to be irreversible and highly scan-rate dependent, suggesting that the denaturation is, at least in part, under kinetic control. The secondary structural changes at various temperatures were monitored by far-ultraviolet CD spectroscopy. These results show that the DSC transition for the thermal denaturation of bovine fibrinogen can be interpreted in terms of a kinetic process, N --> F, where k is a first-order kinetic constant that changes with temperature according to the Arrhenius equation. An important transition peak was observed at 78.8 degrees C which is attributed to the C-terminal parts of the Aalpha chains of fibrinogen.  相似文献   

11.
12.
Chalcones possess various biological properties, for example, antimicrobial, anti‐inflammatory, analgesic, antimalarial, anticancer, antiprotozoal and antitubercular activity. In this study, naphthylchalcone derivatives were synthesized and characterized using 1H NMR 13C NMR, Fourier transform infrared and mass techniques. Yields for all derivatives were found to be >90%. Protein–drug interactions influence the absorption, distribution, metabolism and excretion (ADME) properties of a drug. Therefore, to establish whether the synthesized naphthylchalcone derivatives can be used as drugs, their binding interaction toward a serum protein (bovine serum albumin) was investigated using fluorescence, circular dichroism and molecular docking techniques under physiological conditions. Fluorescence quenching of the protein in the presence of naphthylchalcone derivatives, and other derived parameters such as association constants, number of binding sites and static quenching involving confirmed non‐covalent binding interactions in the protein–ligand complex were observed. Circular dichroism clearly showed changes in the secondary structure of the protein in the presence of naphthylchalcones, indicating binding between the derivatives and the serum protein. Molecular modelling further confirmed the binding mode of naphthylchalcone derivatives in bovine serum albumin. A site‐specific molecular docking study of naphthylchalcone derivatives with serum albumin showed that binding took place primarily in the aromatic low helix and then in subdomain II. The dominance of hydrophobic, hydrophilic and hydrogen bonding was clearly visible and was responsible for stabilization of the complex.  相似文献   

13.
Lipocrine has been selected as an effective candidate for in vivo investigation because of its multiple biological properties, namely inhibition of AChE and BChE activities, inhibition of AChE-induced Aβ aggregation, and ability to protect cells against reactive oxygen species. To evaluate the possibility for lipocrine to become a lead and to be developed as a multipotent drug for the treatment of Alzheimer's disease, ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters need to be determined. Among ADMET parameters, distribution plays a key role in determining the lead drugability, and the drug binding to plasma proteins greatly influences the drug distribution. Here, the human serum albumin (HSA) binding of lipocrine has been studied by circular dichroism (CD) spectroscopy. The reversible binding of lipocrine is stereoselective as shown by the well-defined induced CD spectrum in its binding to HSA. The intensity of the CD signal changes upon changing the [drug]/[HSA] molar ratio, showing a different behavior for a [drug]/[HSA] up to 2/1 or over this molar ratio, suggesting a binding to multiple sites. Competition experiments show that lipocrine interacts significantly with all the main binding sites on the serum carrier. A direct competition has been monitored for site II and bilirubin-binding site, whereas a noncooperative binding should better describe the displacement observed at site I. Rac-lipocrine and its enantiomers are characterized by two different binding modes. Almost the same induced CD spectra were obtained for both (R)- and (S)-lipocrine complexed to HSA, suggesting a similar stereochemistry for the bound enantiomers.  相似文献   

14.
The glass-like transition behavior of concentrated aqueous solutions of bovine serum albumin was examined using rheological techniques. At mass fractions >0.4, there was a marked concentration dependence of viscosity with a glass-like kinetic arrest observed at mass fractions in the region of 0.55. At mass fractions >0.6 the material behaved as a solid with a Young's modulus rising from approximately 20 MPa at a mass fraction of 0.62-1.1 GPa at 0.86. The solid was viscoelastic and exhibited stress relaxation with relaxation times increasing from 33 to 610 s over the same concentration range. The concentration dependence of the osmotic pressure was measured, at intermediate concentrations, using an osmotic stress technique and could be described using a hard sphere model, indicating that the intermolecular interactions were predominantly repulsive. In summary, a major structural relaxation results from the collective motion of the globules at the supra-globule length scale and, at 20 degrees C, this is arrested at water contents of 40% w/w. This appears to be analogous to the glass transition in colloidal hard spheres.  相似文献   

15.
16.
Many therapeutic biologics are formulated with excipients, including the protein excipient human serum albumin (HSA), to increase stability and prevent protein aggregation and adsorption onto glass vials. One biologic formulated with albumin is interferon alpha-2b (IFN α-2b). As is the case with other therapeutic biologics, the increased structural complexity of IFN α-2b compared to a small molecule drug requires that both the correct chemical structure (amino acid sequence) and also the correct secondary and tertiary structures (3 dimensional fold) be verified to assure safety and efficacy. Although numerous techniques are available to assess a biologic's primary, secondary and tertiary structures, difficulties arise when assessing higher order structure in the presence of protein excipients. In these studies far UV circular dichroism spectropolarimetry (far UV-CD) was used to determine the secondary structure of IFN α-2b in the presence of a protein excipient (bovine serum albumin, BSA). We demonstrated that the secondary structure of IFN α-2b remains mostly unchanged at a variety of BSA to IFN α-2b protein ratios. A significant difference in alpha helix and beta sheet content was noted when the BSA to IFN α-2b ratio was 5:1 (w/w), suggesting a potential conformational change in IFN α-2b secondary structure when BSA is in molar excess.  相似文献   

17.
The binding of Pb2+ to bovine serum albumin (BSA) at neutral pH was studied using lead ion selective electrode. The binding data was treated according to Scatchard Equation. The number of binding classes and the number of binding sites, intrinsic dissociation constants and stepwise binding constants for each class were determined. Two binding classes were found. Four binding sites in the first class and five binding sites in the second class were determined. Binding in the first class was stronger than in the second. Similar binding studies were carried out with heat treated BSA. It was found that not only the number of binding sites but also the strength of binding increases upon heat treatment.  相似文献   

18.
19.
To investigate which type of structural and conformational changes is involved in the aggregation processes of bovine serum albumin (BSA), we have performed thermal aggregation kinetics in D(2)O solutions of this protein. The tertiary conformational changes are followed by Amide II band, the secondary structural changes and the formation of beta-aggregates by the Amide I' band and, finally, the hydrodynamic radius of aggregates by dynamic light scattering. The results show, as a function of pD, that: tertiary conformational changes are more rapid as pD increases; the aggregation proceeds through formation of ordered aggregates (oligomers) at pD far from the isoelectric point of the protein; disordered structures add as the pD decreases. Moreover, beta-aggregates seem to contribute only to oligomers formation, as showed by the good correlation between kinetics of scattering intensity and IR absorption intensity. These results indicate for BSA a general mechanism of aggregation composed by partial unfolding of the tertiary structure and by the decrease of alpha-helix and random coil contents in favor of beta-sheet aggregates. This mechanism strictly depends on pD and gives rise to almost two distinct types of macromolecular aggregates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号