首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutagenesis with transposon mini-Mulac was used previously to identify a regulatory locus necessary for expression of bioluminescence genes, lux, in Vibrio harveyi (M. Martin, R. Showalter, and M. Silverman, J. Bacteriol. 171:2406-2414, 1989). Mutants with transposon insertions in this regulatory locus were used to construct a hybridization probe which was used in this study to detect recombinants in a cosmid library containing the homologous DNA. Recombinant cosmids with this DNA stimulated expression of the genes encoding enzymes for luminescence, i.e., the luxCDABE operon, which were positioned in trans on a compatible replicon in Escherichia coli. Transposon mutagenesis and analysis of the DNA sequence of the cloned DNA indicated that regulatory function resided in a single gene of about 0.6-kilobases named luxR. Expression of bioluminescence in V. harveyi and in the fish light-organ symbiont Vibrio fischeri is controlled by density-sensing mechanisms involving the accumulation of small signal molecules called autoinducers, but similarity of the two luminescence systems at the molecular level was not apparent in this study. The amino acid sequence of the LuxR product of V. harveyi, which indicates a structural relationship to some DNA-binding proteins, is not similar to the sequence of the protein that regulates expression of luminescence in V. fischeri. In addition, reconstitution of autoinducer-controlled luminescence in recombinant E. coli, already achieved with lux genes cloned from V. fischeri, was not accomplished with the isolation of luxR from V. harveyi, suggesting a requirement for an additional regulatory component.  相似文献   

3.
4.
Vibrio harveyi, which now includes Vibrio carchariae as a junior synonym, is a serious pathogen of marine fish and invertebrates, particularly penaeid shrimp. In fish, the diseases include vasculitis, gastro-enteritis and eye lesions. With shrimp, the pathogen is associated with luminous vibriosis and Bolitas negricans. Yet, the pathogenicity mechanisms are imprecisely understood, with likely mechanisms involving the ability to attach and form biofilms, quorum sensing, various extracellular products including proteases and haemolysins, lipopolysaccharide, and interaction with bacteriophage and bacteriocin-like substances.  相似文献   

5.
6.
7.
8.
9.
10.
African trypanosomes are protozoan parasites that evade the host immune system by varying their dense antigenic coat. The Variant Surface Glycoprotein (VSG) is expressed exclusively from telomere-linked expression sites that contain in addition to the VSG gene, a number of open reading frames termed Expression Site Associated Genes (ESAGs). Here we demonstrate by complementation of a yeast mutant deleted for adenylate cyclase (cyr-1), that an ESAG from Trypanosoma equiperdum encodes an adenylate cyclase. Furthermore, we report that adjacent to adenylate cyclase in the expression site, is a separate open reading frame that encodes a protein sequence motif similar to the leucine-rich repeat regulatory domain of Saccharomyces cerevisiae and Schizosaccharomyces pombe adenylate cyclases. The finding of two adjacent open reading frames homologous to a single enzyme in yeast suggests that the two expression site encoded proteins may interact to regulate adenylate cyclase activity during the course of an infection.  相似文献   

11.
Vibrio vulnificus is a zoonotic pathogen able to cause diseases in humans and fish that occasionally result in sepsis and death. Most reviews about this pathogen (including those related to its ecology) are clearly biased towards its role as a human pathogen, emphasizing its relationship with oysters as its main reservoir, the role of the known virulence factors as well as the clinic and the epidemiology of the human disease. This review tries to give to the reader a wider vision of the biology of this pathogen covering aspects related to its phylogeny and evolution and filling the gaps in our understanding of the general strategies that V. vulnificus uses to survive outside and inside its two main hosts, the human and the eel, and how its response to specific environmental parameters determines its survival, its death, or the triggering of an infectious process.  相似文献   

12.
The Drosophila melanogaster Ketel gene was identified via the Ketel(D) dominant female sterile mutations and their ketel(r) revertant alleles that are recessive zygotic lethals. The maternally acting Ketel(D) mutations inhibit cleavage nuclei formation. We cloned the Ketel gene on the basis of a common breakpoint in 38E1. 2-3 in four ketel(r) alleles. The Ketel(+) transgenes rescue ketel(r)-associated zygotic lethality and slightly reduce Ketel(D)-associated dominant female sterility. Ketel is a single copy gene. It is transcribed to a single 3.6-kb mRNA, predicted to encode the 97-kD Ketel protein. The 884-amino-acid sequence of Ketel is 60% identical and 78% similar to that of human importin-beta, the nuclear import receptor for proteins with a classical NLS. Indeed, Ketel supports import of appropriately designed substrates into nuclei of digitonin-permeabilized HeLa cells. As shown by a polyclonal anti-Ketel antibody, nurse cells synthesize and transfer Ketel protein into the oocyte cytoplasm from stage 11 of oogenesis. In cleavage embryos the Ketel protein is cytoplasmic. The Ketel gene appears to be ubiquitously expressed in embryonic cells. Western blot analysis revealed that the Ketel gene is not expressed in several larval cell types of late third instar larvae.  相似文献   

13.
14.
15.
The Vibrio vulnificus vuuA gene, of which expression is repressed by a complex of iron and ferric uptake regulator (Fur), was characterized to localize the Fur-binding site in its upstream regulatory region. In silico analysis suggested the presence of two possible Fur-binding sites; one is a classical Fur-box and the other is a previously reported distinct Fur-binding site. Site-directed mutagenesis and DNase I protection assays revealed the binding site for the iron-Fur complex, which includes an extended inverted repeat containing a homologous sequence to the classical Fur-box.  相似文献   

16.
利用兼并PCR的方法克隆得到哈氏弧菌T4的DNA腺嘌呤甲基化酶(dam)基因,序列分析表明该基因编码279个氨基酸,与其它已知弧菌的Dam具有较高的同源性,其中与副溶血弧菌Dam的相同性达95%。功能检验表明所克隆的dam基因在大肠杆菌中具有DNA腺嘌呤甲基化酶活性,能够甲基化大肠杆菌染色体DNA GATC序列中的腺嘌呤。运用染色体步移法获得dam基因上游的3251 bp DNA,发现该区域含有3个基因,其与dam在染色体上的相对排列顺序为:莽草酸激酶-脱氢奎尼酸合成酶-damX-dam。对dam上游DNA序列研究发现位于翻译起点ATG上游的78bp、112bp和477bpDNA片段皆具有启动子活性,但前者的活性明显高于后二者。  相似文献   

17.
18.
19.
20.
Vibrio vulnificus can be divided into two groups on the basis of pathogenesis. Group 1 is pathogenic only to humans, whereas group 2 is pathogenic to eels and occasionally to humans. Although both groups produce a 50-kDa cytotoxin-hemolysin (V. vulnificus hemolysin; VVH), the toxins are different. In the present study, the nucleotide sequence of the toxin gene (vvhA ) of strain CDC B3547 (a group 2 strain) was determined, and the deduced amino acid sequence was compared to that of strain L-180 (a group 1 strain). The nucleotide sequence of vvhA of strain CDC B3547 was about 96% identical with that of strain L-180, which results in a difference of 3 amino acid residues in the C-terminal lectin domain of VVH. Nevertheless, two primer sets for polymerase chain reaction could be designed to differentiate the toxin gene of each strain. When 27 V. vulnificus clinical isolates were tested, group 1 strains (9 strains) were shown to react only to the primers designed for vvhA of strain L-180; whereas, the gene of group 2 strains (18 strains) could be amplified with the primers for vvhA of strain CDC B3547. These findings may lead to development of a novel genetic grouping system related to the virulence potential or to the host range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号