首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a fractal branching pattern the same rules govern branching at each subsequent level. The initial size (diameter) and the essential branching rules thus contain the information required to construct the whole pattern. If root branching patterns have fractal characteristics, measurement of the proximal root diameter at the stem base and the branching rules as observed anywhere in the root system, would be enough to predict total root length, root diameter distribution and root length per unit dry weight (specific root length). A ‘pipe stem’ model is used to derive algebraic relations between total root size and proximal root diameter for two classes of branching patterns, determinate and proportionate. To predict total root length from the proximal root diameter, at least information is needed on the minimum root diameter, the average length of internal and external links (segments) and the proportionality factor between total cross sectional areas before and after branching. For the length of the longest root or the specific root length further information on the branching rules is needed, as it is highest for determinate and proportionate branching rules, respectively.  相似文献   

2.
Based on fractal and pipe model assumptions, a static three-dimensional model of the Gliricidia sepium root system was developed, in order to provide a basis for the prediction of root branching, size and mass in an alley cropping system. The model was built from observations about the topology, branching rules, link length and diameter, and root orientation, provided by in situ and extracted root systems. Evaluation tests were carried out at the plant level and at the field level. These tests principally concerned coefficients α and q –- the proportionality factor α between total cross-sectional area of a root before and after branching, and allocation parameter q that defines the partitioning of biomass between the new links after a branching event –- that could be considered as key variables of this fractal approach. Although independent of root diameter, these coefficients showed a certain variability that may affect the precision of the predictions. When calibrated, however, the model provided suitable predictions of root dry matter, total root length and root diameter at the plant level. At the field level, the simulation of 2D root maps was accurate for root distribution patterns, but the number of simulated root dots was underestimated in the surface layers. Hence recommendations were made to improve the model with regard to α and q. This static approach appeared to be well suited to study the root system of adult trees. Compared with explicit models, the main advantage of the fractal approach is its plasticity and ease of use. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Root morphology influences strongly plant/soil interactions. However, the complexity of root architecture is a major barrier when analysing many phenomena, e.g. anchorage, water or nutrient uptake. Therefore, we have developed a new approach for the representation and modelling of root architecture based on branching density. A general root branching density in a space of finite dimension was used and enabled us to consider various morphological properties. A root system model was then constructed which minimizes the difference between measured and simulated root systems, expressed with functions which map root density in the soil. The model was tested in 2D using data from Maritime pine Pinus pinaster Ait. structural roots as input. We showed that simulated and real root systems had similar root distributions in terms of radial distance, depth, branching angle and branching order. These results indicate that general density functions are not only a powerful basis for constructing models of architecture, but can also be used to represent such structures when considering root/soil interaction. These models are particularly useful in that they provide a local morphological characterization which is aggregated in a given unit of soil volume.  相似文献   

4.
Craine  J. M.  Wedin  D. A.  Chapin III  F. S.  Reich  P. B. 《Plant and Soil》2003,250(1):39-47
Dependence of the properties of root systems on the size of the root system may alter conclusions about differences in plant growth in different environments and among species. To determine whether important root system properties changed as root systems aged and accumulated biomass, we measured three important properties of fine roots (tissue density, diameter, and C:N) and three biomass ratios (root:shoot, fine:coarse, and shallow:deep) of monocultures of 10 North American grassland species five times during their second and third years of growth. With increasing belowground biomass, root tissue density increased and diameter decreased. This may reflect cortical loss associated with the aging of roots. For non-legumes, fine root C:N decreased with increasing root biomass, associated with decreases in soil solution NO3 concentrations. No changes in fine root C:N were detected with increasing belowground biomass for the two legumes we studied. Among all 10 species, there were generally no changes in the relative amounts of biomass in coarse and fine roots, root:shoot, or the depth placement of fine roots in the soil profile as belowground biomass increased. Though further research is needed to separate the influence of root system size, age of the roots, and changes in nutrient availability, these factors will need to be considered when comparing root functional traits among species and treatments.  相似文献   

5.
亚热带6种树种细根序级结构和形态特征   总被引:4,自引:0,他引:4  
以福建省建瓯市万木林自然保护区内占优势的6种天然林树种(沉水樟Cinnamomum micranthum,CIM;观光木Tsoongiodendron odorum Chun,TOC;浙江桂Cinnamomum chekiangense,CIC;罗浮栲Castanopsis fabri,CAF;细柄阿丁枫Altingiagracilipes,ALG;米槠Castanopsis carlesii,CAC)为研究对象,对其1—5级细根的结构,形态特征及生物量进行了分析。结果表明:沉水樟,细柄阿丁枫和米槠细根分支比表现出在1,2级(4倍以上)明显大于其它序级(3倍左右);其余3种树种则是在3,4级的细根分支比最大,其中浙江桂达到8.65倍,其它序级则大致为3倍左右。6种树种1,2级细根数量占到总数的70%—90%。6种树种细根直径,根长,组织密度随序级升高逐渐增大,比根长减小,生物量未表现出一致的变化规律,6种树种生物量主要集中在高级根部分。方差分析表明,树种对细根分支比例有显著影响(P<0.05),浙江桂和米槠细根分支水平对分支比例有极显著影响(P<0.01),其余4种树种分支水平对分支比例有显著影响(P<0.05),树种和分支水平的交互作用对6种树种细根分支比均有极显著的影响(P<0.01);树种对细根根长,直径以及生物量均有极显著影响(P<0.01),对比根长有显著影响(P<0.05),而对组织密度的影响则不显著(P>0.05);树种和序级的交互作用对细根根长,直径以及生物量均有极显著影响(P<0.01),对组织密度有显著影响(P<0.05),对比根长影响不显著(P>0.05)。序级对6种树种细根根长,直径,比根长以及生物量的影响并未达到一致,对6种树种细根组织密度有极显著影响(P<0.01)。树种间1—4级根的比根长变异主要由组织密度引起,而5级根的比根长变异则由直径引起,同时在1级根中组织密度与直径呈现出权衡的关系。6种树种细根数量,直径,根长,比根长,组织密度以及生物量与序级之间回归分析发现它们与序级之间具有指数函数,线性函数,二次函数,三次函数或者幂函数关系。  相似文献   

6.
Root architecture is a crucial part of plant adaptation to soil heterogeneity and is mainly controlled by root branching. The process of root system development can be divided into two successive steps: lateral root initiation and lateral root development/emergence which are controlled by different fluxes of the plant hormone auxin. While shoot architecture appears to be highly regular, following rules such as the phyllotactical spiral, root architecture appears more chaotic. We used stochastic modeling to extract hidden rules regulating root branching in Arabidopsis thaliana. These rules were used to build an integrative mechanistic model of root ramification based on auxin. This model was experimentally tested using plants with modified rhythm of lateral root initiation or mutants perturbed in auxin transport. Our analysis revealed that lateral root initiation and lateral root development/emergence are interacting with each other to create a global balance between the respective ratio of initiation and emergence. A mechanistic model based on auxin fluxes successfully predicted this property and the phenotype alteration of auxin transport mutants or plants with modified rhythms of lateral root initiation. This suggests that root branching is controlled by mechanisms of lateral inhibition due to a competition between initiation and development/emergence for auxin.  相似文献   

7.
Plant allometry that is related to plant architecture and biomass allocation strongly influences a plants ability to grow in shaded forest understory. Some allometric traits can change with plant size. The present study compared crown and trunk allometries, root/shoot biomass allometry, and root architecture among understory saplings (0.25--5m height, except for two trees > 5 < 7 m) of seven deciduous dicotyledonous species in central Japan. Associations of the crown and trunk allometries with several plant morphological attributes were analyzed. Branch morphology (plagiotropyvs orthotropy) and life size were correlated with sapling crown and trunk allometries. Both large leaves and orthotropic branches were associated with a narrow small crown and slender trunk. The root/shoot ratio decreased rapidly with increasing plant height for saplings shorter than about 1.5 m. Less shade-tolerant species tended to have smaller root/shoot ratios for saplings taller than 1.5 m. With an increase in plant height, the branch/trunk biomass ratio decreased for saplings with plagiotropic branches but increased for saplings with orthotropic branches. Four subcanopy species (Acer distylum, Carpinus cordata, Fraxinus lanuginosa and Acanthopanax sciadophylloides) had superficial root systems; a common understory species (Sapium japonica) had a deep tap root system; and a canopy species (Magnolia obovata) and a subcanopy species (Acer tenuifolium) had heart root systems of intermediate depth. The root depth was not related to shade tolerance. Among species of the same height, the difference in fine root length can be 30-fold.  相似文献   

8.
Modelling the branching growth fractal pattern of the maize root system   总被引:6,自引:1,他引:5  
Using the technique of L-systems, a growth model of the maize root system is developed. From the observation of the root systems developed under various soil density in eight root boxes, a spatial hierarchy of growth rules was extracted. The rules were divided into three categories: a meta-rule for describing features of an entire root system, a branching growth rule and a tip elongation rule. Some variations in the entire features of the root system, such as the outline and the root distribution, were confirmed by observation, and then the respective meta-rules were re-defined. The branching properties of first- and second-order lateral roots were statistically almost equal in the observations, and this lead us to set up a single stochastic branching growth rule. Tip elongation movement was not observed here; its rule had to be assumed by reference to data in the literature. A single set of branching growth and tip elongation rules were coupled with the respective meta-rules corresponding to the root samples observed, where a small scale rule was loosely governed by a large scale rule. Computer simulations offered optimized drawings of the observed root systems, and they also reproduced a typical anisotropic power distribution of roots similar to those observed.  相似文献   

9.
Dynamic models of tree root growth and function have to reconcile the architectural rules for coarse root topology with the dynamics of fine root growth (and decay) in order to predict the strategic plus opportunistic behaviour of a tree root system in a heterogeneous soil. We present an algorithm for a 3D model based on both local (soil voxel level) and global (tree level) controls of root growth, with development of structural roots as a consequence of fine root function, rather than as driver. The suggested allocation rules of carbon to fine root growth in each rooted voxel depend on the success in water uptake in this voxel during the previous day, relative to overall supply and demand at plant level. The allocated C in each voxel is then split into proliferation (within voxel growth) and extension into neighbouring voxels (colonisation), with scale-dependent thresholds and transfer coefficients. The fine root colonisation process defines a dynamic and spatially explicit demand for transport functions. C allocation to development of a coarse root infrastructure linking all rooted voxels depends on the apparent need for adjustment of root diameter to meet the topologically defined sap flow through this voxel during the previous day. The allometric properties of the coarse root system are maintained to be in line with fractal branching theory. The model can predict the dynamics of the shape and structure (fine root density, coarse root topology and biomass) of the root system either independently of soil conditions (purely genetically-driven) or including both the genetic and environmental effects of roots interacting with soil water supply and its external replenishment, linking in with existing water balance models. Sensitivity of the initial model to voxel dimensions was addressed through explicit scaling rules resulting in scale-independent parameters. The model was parameterised for two tree species: hybrid walnut (Juglans nigra × regia) and wild cherry (Prunus avium L.) using results of a pot experiment. The model satisfactorily predicted the root growth behaviour of the two species. The model is sparse in parameters and yet applicable to heterogeneous soils, and could easily be upgraded to include additional local influences on root growth (and decay) such as local success in nutrient uptake or dynamic soil physical properties.  相似文献   

10.
Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field.Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars.Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals.Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models.  相似文献   

11.
M. Blouin  S. Barot  C. Roumet 《Plant and Soil》2007,290(1-2):371-381
Describing root biomass distribution in diameter classes is a fundamental way to understand the relation between a plant and its surrounding soil. Current methods used for its measurement are not well adapted to large root systems. A new quick method is proposed for the measurement of diameter distribution in large root systems. It is based on the one used in pedology to assess soil granulometry. Roots are dried, cut in a mixer and placed on a sieve column; biomass distribution according to root diameter is assessed by weighting the biomass recovered in each sieve. The validity of the method was tested by comparing the sieving method results with those obtained on dried root systems with a digital image analysing system. A sensitivity analysis showed that the optimal rotation speed of the mixer was 2,000 rpm and the optimal sieving time was 22 min. The actual diameter distribution of artificial root mixtures of known root diameter distribution was closely correlated with the root biomass distribution measured by the sieving method (r 2 = 0.87). Its application to four identical root systems resulted in values of biomass per diameter class with small standard errors. It is the first method allowing directly to measure biomass (and not length) distribution in diameter classes. It is quick, cheap and does not require root system sub-sampling; consequently, large root systems which were almost never studied can now be analysed. This method is thus adequate for repeated measurements of root diameter distribution in agronomical or ecological research.  相似文献   

12.
We have limited understanding of architecture and morphology of fine root systems in large woody trees. This study investigated architecture, morphology, and biomass of different fine root branch orders of two temperate tree species from Northeastern China—Larix gmelinii Rupr and Fraxinus mandshurica Rupr —by sampling up to five fine root branch orders three times during the 2003 growing season from two soil depths (i.e., 0–10 and.10–20 cm). Branching ratio (R b) differed with the level of branching: R b values from the fifth to the second order of branching were approximately three in both species, but markedly higher for the first two orders of branching, reaching a value of 10.4 for L. gmelinii and 18.6 for F. mandshurica. Fine root diameter, length, SRL and root length density not only had systematic changes with root order, but also varied significantly with season and soil depth. Total biomass per order did not change systematically with branch order. Compared to the second, third and/or fourth order, the first order roots exhibited higher biomass throughout the growing season and soil depths, a pattern related to consistently higher R b values for the first two orders of branching than the other levels of branching. Moreover, the differences in architecture and morphology across order, season, and soil depth between the two species were consistent with the morphological disparity between gymnosperms and angiosperms reported previously. The results of this study suggest that root architecture and morphology, especially those of the first order roots, should be important for understanding the complexity and multi-functionality of tree fine roots with respect to root nutrient and water uptake, and fine root dynamics in forest ecosystems.  相似文献   

13.
Based on morphometric data, we calculate the structural parameters of the coronary vasculature as an optimal branching bed. We show (i) significant correlations between the diameters of the larger daughter and the parent vessel and between the diameter of the smaller daughter vessel and the asymmetry coefficient; (ii) differences in the structural parameters for two types of artery that deliver and distribute blood in the cardiac muscle; and (iii) the length-diameter relationships for different arteries. The coronary vasculature is characterized by asymmetrical branching and thus should be modeled with self-similar asymmetrical tree-like systems.  相似文献   

14.
Ephemeral root modules in Fraxinus mandshurica   总被引:1,自引:0,他引:1  
Xia M  Guo D  Pregitzer KS 《The New phytologist》2010,188(4):1065-1074
Historically, ephemeral roots have been equated with 'fine roots' (i.e. all roots of less than an arbitrary diameter, such as 2 mm), but evidence shows that 'fine roots' in woody species are complex branching systems with both rapid-cycling and slow-cycling components. A precise definition of ephemeral roots is therefore needed. Using a branch-order classification, a rhizotron method and sequential sampling of a root cohort, we tested the hypothesis that ephemeral root modules exist within the branching Fraxinus mandshurica (Manchurian ash) root system as distal nonwoody lateral branches, which show anatomical, nutritional and physiological patterns distinct from their woody mother roots. Our results showed that in F. mandshurica, distal nonwoody root branch orders die rapidly as intact lateral branches (or modules). These nonwoody branch orders exhibited highly synchronous changes in tissue nitrogen concentrations and respiration, dominated root turnover, nutrient flux and root respiration, and never underwent secondary development. The ephemeral root modules proposed here may provide a functional basis for differentiating and sampling short-lived absorptive roots in woody plants, and represent a conceptual leap over the traditional coarse-fine root dichotomies based on arbitrary size classes.  相似文献   

15.
The importance of species richness to ecosystem functioning and services is a central tenet of biological conservation. However, most of our theory and mechanistic understanding is based on diversity found aboveground. Our study sought to better understand the relationship between diversity and belowground function by studying root biomass across a plant diversity gradient. We collected soil cores from 91 plots with between 1 and 12 aboveground tree species in three natural secondary forests to measure fine root (≤ 2 mm in diameter) biomass. Molecular methods were used to identify the tree species of fine roots and to estimate fine root biomass for each species. This study tested whether the spatial root partitioning (species differ by belowground territory) and symmetric growth (the capacity to colonize nutrient-rich hotspots) underpin the relationship between aboveground species richness and fine root biomass. All species preferred to grow in nutrient-rich areas and symmetric growth could explain the positive relationship between aboveground species richness and fine root biomass. However, symmetric growth only appeared in the nutrient-rich upper soil layer (0–10 cm). Structural equation modelling indicated that aboveground species richness and stand density significantly affected fine root biomass. Specifically, fine root biomass depended on the interaction between aboveground species richness and stand density, with fine root biomass increasing with species richness at lower stand density, but not at higher stand density. Overall, evidence for spatial (i.e. vertical) root partitioning was inconsistent; assumingly any roots growing into deeper unexplored soil layers were not sufficient contributors to the positive diversity–function relationship. Alternatively, density-dependent biotic interactions affecting tree recruitment are an important driver affecting productivity in diverse subtropical forests but the usual root distribution patterns in line with the spatial root partitioning hypothesis are unrealistic in contexts where soil nutrients are heterogeneously distributed.  相似文献   

16.
《Acta Oecologica》2001,22(2):77-85
Plants vary greatly in root system characteristics, but the causes of this variation are poorly understood. We hypothesised that root system size is closely linked to the plant’s ecological strategy, and that seed size is correlated with root diameter, as a result of anatomical constraints. We analysed the relationships between root characteristics – root depth, basal root diameter and root type – and other plant attributes in more than 300 plant species from two ecologically and geographically contrasted areas: Britain and NE Spain. We used statistical tests that took into account phylogenetic patterns in the data. Apart from plant life span, only plant height and seed size were related to root size in the adult plants. Plant species with shallow or thin main roots had smaller seeds than species with deep or thick main roots, and species with taproots had bigger seeds than plants with fibrous or especially with adventitious roots. These relationships were consistent in the two floras. Seed size was related to plant height, but this association was weaker than that between seed size and root depth. Root depth explained a significant proportion of the variation in seed weight, independently from life form or dispersal mode and, in some cases, more than either of them. These results suggest that traditional ecological explanations do not adequately explain the relationship between seed and plant adult size, and that there will be other, complementary explanations. In particular, we propose that the relationship between seed size and plant height is secondary. The putative causal sequence is that deep-rooted plants (which are generally taller) have large seeds because of allometric and developmental constraints that mean that only large seeds can produce the thick roots that can grow rapidly to depth.  相似文献   

17.
Thaler  Philippe  Pagès  Loï c 《Plant and Soil》1999,217(1-2):151-157
When plants develop in strong soils, growth of the root system is generally depressed. However, branching and elongation of branches are often less affected than growth of the main axes, whenever the whole root system encounters even-impeded conditions. On the basis of a model simulating root growth and architecture as related to assimilate availability, we propose a simple hypothesis to explain such behaviour. In the model, growth of each root depends on its own elongation potential, which is estimated by its apical diameter. The potential elongation rate–apical diameter relationship is the same for all the roots of the system and is described by a monomolecular function. Our hypothesis is that the effect of soil strength can be simulated by introducing an impedance factor in the definition of root maximum potential elongation rate, common to the whole root system. When such impedance factor is applied, it affects more the potential of larger roots (main axes) than that of thinner roots (secondary and tertiary branches). Simulations provided in high impedance conditions led to root systems characterised by short taproots, whereas growth of secondary roots was unaffected and growth of tertiary roots was enhanced. Actual branching density was also higher, although branching rules have been unchanged. Such simulated systems where similar to that observed in strong soils. Friction laws or pore size can be involved in the larger reduction of the potential growth of main axes. Moreover, when growth of main axes is restricted, assimilate availability becomes higher for branches and that could explain that their growth could be increased in a homogeneous strong soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Jaan Liira  Kristjan Zobel 《Oikos》2000,91(1):109-114
So far, in all studies on the much-discussed hump-backed relationship between plant community productivity and species richness, productivity has been assessed through plant shoot biomass, i.e. it has been ignored that frequently most of the biomass is produced below ground. We revisited the 27 grassland and forest field-layer communities, studied earlier by Zobel and Liira, to sample root biomass, plant total biomass and root/shoot allocation, and learn how the incorporation of below-ground biomass data would affect the shape of the hump-backed relationship. In order to avoid scaling artefacts we estimated richness as the average count of species per 500 plant ramets (absolute richness). We also included relative richness measures. Relative richness was defined as richness per 500 ramets/size of the actual species pool (the set of species present in the community), relative pool size was defined as size of the actual species pool/size of the regional species pool (the set of species available in the region and capable of growing in the given community).
The biomass-absolute richness relationship was humped, irrespective of the biomass measure used, the hump being most obvious when plant total biomass was used as the independent variable. Evidently, the unimodal richness–productivity curve is not a sampling artefact, as suspected by Oksanen. However, relative richness was not related to community biomass (above-ground, below-ground or total). The hump-backed curve is shaped by the sizes of actual species pools in communities, implying that processes which are responsible for small-scale diversity pattern mainly operate on the community level.
Neither absolute nor relative richness were significantly related to root/shoot allocation. The presumably stronger (asymmetric) shoot competition at greater allocation to shoots appears not to suppress small-scale richness. However, there is a significant relationship between relative pool size and root/shoot allocation. Relatively more species from regional species pools are able to enter and persist in communities with more biomass allocated into roots.  相似文献   

19.
Tropical rain forests decrease in tree height and aboveground biomass (AGB) with increasing elevation. The causes of this phenomenon remain insufficiently understood despite a number of explanations proposed including direct or indirect effects of low temperature on carbon acquisition and carbon investment, adverse soil conditions and impaired nutrient supply. For analysing altitudinal patterns of aboveground/belowground carbon partitioning, we measured fine (<2 mm in diameter) and coarse root (2–5 mm) biomass and necromass and leaf area index (LAI), and estimated AGB from stand structural parameters in five tropical mountain rain forests at 1050, 1540, 1890, 2380 and 3060 m along an altitudinal transect in the South Ecuadorian Andes. Average tree height and AGB were reduced to less than 50% between 1050 and 3060 m, LAI decreased from 5.1 to 2.9. The leaf area reduction must have resulted in a lowered canopy carbon gain and thus may partly explain the reduced tree growth in the high-elevation stands. In contrast, both fine and coarse root biomass significantly increased with elevation across this transect. The ratio of root biomass (fine and coarse) to AGB increased more than ten-fold from 0.04 at 1050 m to 0.43 at 3060 m. Under the assumption that fine root biomass does reflect root productivity, our data indicate a marked belowground shift in C allocation with increasing elevation. Possible explanations for this allocation shift are discussed including reduced N supply due to low temperatures, water logging or adverse soil chemical conditions. We conclude that the fine root system and its activity may hold the key for understanding the impressive reduction in tree size along tropical mountain slopes in Ecuador. Analyses of fine root turnover and longevity in relation to environmental factors along altitudinal transects in tropical mountains are urgently needed.  相似文献   

20.
Global patterns of root turnover for terrestrial ecosystems   总被引:42,自引:1,他引:42  
Root turnover is a critical component of ecosystem nutrient dynamics and carbon sequestration and is also an important sink for plant primary productivity. We tested global controls on root turnover across climatic gradients and for plant functional groups by using a database of 190 published studies. Root turnover rates increased exponentially with mean annual temperature for fine roots of grasslands ( r 2 = 0.48) and forests ( r 2 = 0.17) and for total root biomass in shrublands ( r 2 = 0.55). On the basis of the best-fit exponential model, the Q 10 for root turnover was 1.4 for forest small diameter roots (5 mm or less), 1.6 for grassland fine roots, and 1.9 for shrublands. Surprisingly, after accounting for temperature, there was no such global relationship between precipitation and root turnover. The slowest average turnover rates were observed for entire tree root systems (10% annually), followed by 34% for shrubland total roots, 53% for grassland fine roots, 55% for wetland fine roots, and 56% for forest fine roots. Root turnover decreased from tropical to high-latitude systems for all plant functional groups. To test whether global relationships can be used to predict interannual variability in root turnover, we evaluated 14 yr of published root turnover data from a shortgrass steppe site in northeastern Colorado, USA. At this site there was no correlation between interannual variability in mean annual temperature and root turnover. Rather, turnover was positively correlated with the ratio of growing season precipitation and maximum monthly temperature ( r 2 = 0.61). We conclude that there are global patterns in rates of root turnover between plant groups and across climatic gradients but that these patterns cannot always be used for the successful prediction of the relationship of root turnover to climate change at a particular site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号