首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cold and desiccation tolerance was investigated in the eggs of the band‐legged ground cricket Dianemobius nigrofasciatus in relation to embryonic diapause. Diapause eggs were more tolerant to both desiccation and cold than non‐diapause eggs. In addition, diapause‐destined eggs on day zero (0–12 h after being laid) already showed high tolerance to these stresses before entering diapause. This clearly indicates that stress tolerance, like diapause, is controlled by photoperiod, but is not directly associated with diapause itself. Because the acquisition of stress tolerance predates the onset of diapause, it is plausible that diapause programming during some period before the onset of diapause is involved in the acquisition of stress tolerance. Weights and sizes were nearly identical in short‐day and long‐day eggs until day five. Sorbitol, a major sugar alcohol in eggs of D. nigrofasciatus, was accumulated at the same level in short‐day and long‐day eggs on days zero and five. These results indicate that the surface‐to‐volume ratio as well as the accumulation of sugar alcohol is not involved in the acquisition of stress tolerance. Maternal factors are clearly involved in the acquisition of stress tolerance in D. nigrofasciatus eggs, but the physiological mechanisms underlying the tolerance are still unclear.  相似文献   

2.
A comparison of the biological control of aphids and coccids was carried out by analyzing success rates for the three major types of biological control, i.e., classical, augmentative, and conservational. Because of the higher intrinsic rates of increase for aphids versus coccids, the working hypothesis that biological control of aphids is less successful compared to coccids was adopted. However, this hypothesis was not supported by an analysis of classical biological control using the BIOCAT database. In this analysis, parasitoids were more successful than predators when used against either aphids or coccids, but the control of Icerya spp. with Rodolia spp. (predators) was highly successful. Some reasons for success of Rodolia spp. are adduced, but field studies on the long-term population dynamics of Icerya–Rodolia systems are needed for determining the mechanisms of regulation. Comparative analyses of augmentative and conservational biological control of aphids and coccids were inconclusive, due to lack of adequate databases; some possible factors involved in the success of these types of biological control are discussed. It is suggested that parasitoids could be better control agents than predators in augmentative biological control of aphids in production greenhouses. Conservational biological control of either aphids or coccids should be aimed at enhancing populations of indigenous natural enemies, especially mobile generalist predators that are capable of keeping pace with mobile pests.  相似文献   

3.
When the interests of mutualists are not perfectly aligned, control mechanisms that modulate interactions can maintain mutually beneficial outcomes and stabilize mutualisms over evolutionary time. However, the costs and benefits of symbiosis often change with ontogeny and whether control mechanisms are adjusted to reflect ontogenetic changes is largely unknown. We examined the recently described cleaning symbiosis between crayfish Cambarus chaugaensis and ectosymbiotic annelids (Xironodrilus appalachius) for evidence of ontogenetic changes in symbiont control. Xironodrilus appalachius provide a beneficial cleaning service to C. chaugaensis by removing epibiotic accumulations from the gills, but crayfish also incur costs via density‐dependent facultative parasitism of gill tissue. A series of laboratory experiments using crayfish from three size (age) – classes demonstrated that crayfish use grooming to limit cleaner density and grooming effects on cleaners varied with crayfish age. Small crayfish quickly removed essentially all of their cleaners. Intermediate crayfish removed most of their cleaners, but some cleaners persisted at a location apparently inaccessible to grooming and far from the gill chamber. Large crayfish removed a smaller proportion of cleaners and cleaners were allowed access to the gill chamber, thus initiating the cleaning symbiosis. Cleaner removal was not dependent on cleaner density, suggesting that crayfish do not regulate cleaners to a specific density. Experimental results were corroborated by patterns observed during a field survey. We argue decreased cleaner removal and relaxed control of cleaner attachment sites corresponds to ontogenetic changes in the costs and benefits of symbiosis. This study integrates two major theoretical perspectives from ecological literature; control mechanisms and ontogenetic shifts, and illustrates how changes in control mechanisms with ontogeny may favor life‐long positive outcomes of symbiosis. Ontogenetic shifts in the costs and benefits of symbiosis may be common; therefore future theoretical and empirical studies of symbioses should incorporate both perspectives.  相似文献   

4.
The venome, the sum of all components of an animal venom is extremely complex. It is characterized by the enormous variety of biologically active peptides and proteins, which are mainly used for prey capture and defense. The question, how venomousness in animals developed, what are the genetic mechanisms involved, is largely unresolved. The elucidation of the genome of a marine cone snail (Conus consors) provides the opportunity to better understand not only the genetic background of their biology, but also of their venome, and the mechanisms involved in resistance to their own venom. Based on the venom peptides novel drugs will be developed.  相似文献   

5.
6.
7.
Understanding the links between developmental patterning mechanisms and force-producing cytoskeletal mechanisms is a central goal in studies of morphogenesis. Gastrulation is the first morphogenetic event in the development of many organisms. Gastrulation involves the internalization of surface cells, often driven by the contraction of actomyosin networks that are deployed with spatial precision—both in specific cells and in a polarized manner within each cell. These cytoskeletal mechanisms rely on different cell fate and cell polarity regulators in different organisms. Caenorhabditis elegans gastrulation presents an opportunity to examine the extent to which diverse mechanisms may be used by dozens of cells that are internalized at distinct times within a single organism. We identified 66 cells that are internalized in C. elegans gastrulation, many of which were not known previously to gastrulate. To gain mechanistic insights into how these cells internalize, we genetically manipulated cell fate, cell polarity and cytoskeletal regulators and determined the effects on cell internalization. We found that cells of distinct lineages depend on common actomyosin-based mechanisms to gastrulate, but different cell fate regulators, and, surprisingly, different cell polarity regulators. We conclude that diverse cell fate and cell polarity regulators control common mechanisms of morphogenesis in C. elegans. The results highlight the variety of developmental patterning mechanisms that can be associated with common cytoskeletal mechanisms in the morphogenesis of an animal embryo.  相似文献   

8.
A focused approach that exploits a single plant species, namely, Arabidopsis thaliana, as a means to understand how leaf cells differentiate and the factors that govern overall leaf morphogenesis has begun to generate a significant body of knowledge in this model plant. Although many studies have concentrated on specific cell types and factors that control their differentiation, some degree of consensus is starting to be reached. However, an understanding of specific mechanisms by which cells differentiate in relation to their position, that appears to be an overriding factor in this process, is not yet in place for cell types in the Arabidopsis leaf. It is clear that perturbations in cellular development within the leaf do not necessarily have a general effect on morphogenesis. Environmental factors, particularly light, have been known to affect leaf cell differentiation and expansion, and endogenous hormones also appear to play an important role, through mechanisms that are beginning to be uncovered. It is likely that continued identification of genes involved in leaf development and their regulation in relation to positional information or other cues will lead to a clearer understanding of the control of differentiation and morphogenesis in the Arabidopsis leaf.  相似文献   

9.
During the past 25 years, great advances have been made in understanding the physiology, morphology and biochemistry of fertilization in invertebrate animal species. In contrast to this situation, there is a paucity of knowledge pertaining to mammalian fertilization. Major areas in which information is lacking are the nature of changes undergone by spermatozoa in preparation for fertilization, and the mechanisms involved in sperm penetration of the egg investments. The present state of knowledge of these events is outlined, and the weaknesses of some current concepts are evaluated. Fertilization of mammalian eggs in vitro seems an attractive method for studying gamete interaction, but experience has shown that numerous problems are associated with this technique. As a result, the information on mammalian fertilization that has been derived from studies conducted in vitro has fallen considerably short of expectations; some factors contributing to this discrepancy are described. Recent findings concerning the regulation of sperm motility and fertilizing ability seem to have considerable significance for mammalian fertilization in vivo and in vitro. These findings have been utilized to refine existing procedures; fertilization of hamster eggs in vitro has now been accomplished in the presence of numbers of spermatozoa comparable to those believed to be present at the site and time of fertilization in vivo. It is anticipated that this improved technique, by more closely approximating the physiological situation, will substantially assist the derivation of useful information from in vitro fertilization studies.  相似文献   

10.
The development of wild-type Arabidopsis thaliana (L.) Heyhn and two late-flowering fve mutants has been analysed under different environmental conditions. In wild-type plants, short-day photoperiods delay the floral transition as a consequence of lengthening all the developmental phases of the plant. Moreover, short days also alter the inflorescence structure by reducing the internode elongation and delaying the establishment of the floral developmental programme in the lateral meristems of the inflorescence and co-florescences. Mutations at the FVE locus cause a delay in flowering time, and a change in the inflorescence structure, similar to the effect of short photoperiods on wild-type plants. However, the effect of the fve mutations is additive to the effect of short days, and all the aspects of the Fve phenotype are corrected by vernalization. These results seem to indicate that FVE is not simply involved in timing the transition from vegetative to reproductive growth, but that it could play a role during all stages of plant development.  相似文献   

11.
Controlling and managing the degree of phenotypic diversification of microbial populations is a challenging task. This task not only requires detailed knowledge regarding diversification mechanisms but also advanced technical set-ups for the real-time analyses and control of population behaviour on single-cell level. In this work, set-up, design and operation of the so called segregostat are described which, in contrast to a traditional chemostat, allows the control of phenotypic diversification of microbial populations over time. Two exemplary case studies will be discussed, i.e. phenotypic diversification dynamics of Eschericia coli and Pseudomonas putida based on outer membrane permeabilization, emphasizing the applicability and versatility of the proposed approach. Upon nutrient limitation, cell population tends to diversify into several subpopulations exhibiting distinct phenotypic features (non-permeabilized and permeabilized cells). Online analysis leads to the determination of the ratio between cells in these two states, which in turn triggers the addition of glucose pulses in order to maintain a predefined diversification ratio. These results prove that phenotypic diversification can be controlled by means of defined pulse-frequency modulation within continuously running bioreactor set-ups. This lays the foundation for systematic studies, not only of phenotypic diversification but also for all processes where dynamics single-cell approaches are required, such as synthetic co-culture processes.  相似文献   

12.
The rice photoperiod-sensitive genic male-sterile mutant (PGMR) is sterile under long days, but fertile in short days. Phytochrome is involved in the photoperiod-induced male-sterile process. To investigate the mechanisms, of phytochrome action in PGMR, end-of-day (EOD) experiments were carried out. Flowering in PGMR was delayed considerably by EOD far-red light exposures following a short day of 10 hr, whereas its fertility decreased to the same extent as the original line. This result suggests that photoperiod response mediating fertility alteration in PGMR somewhat differed from that in flowering,i.e., fertility alteration and flowering might be under the separate phytochrome signaling control.  相似文献   

13.
Associative learning is well documented in Hymenopteran parasitoids, where it is thought to be an adaptive mechanism for increasing successful host location in complex environments. Based on this learning capacity, it has been suggested that providing prerelease training to parasitoids reared for inundative release may lead to a subsequent increase in their efficacy as biological control agents. Using the fruit fly parasitoid Diachasmimorpha krausii we tested this hypothesis in a series of associative learning experiments which involved the parasitoid, two host fruits (tomatoes and nectarine), and one host fly (Bactrocera ttyoni). In sequential Y-tube olfactometer studies, large field-cage studies, and then open field studies, naive wasps showed a consistent preference for nectarines over tomatoes. The preference for nectarines was retained, but not significantly increased, for wasps which had prior training exposure to nectarines. However, and again consistently at all three spatial scales, prior experience on tomatoes led to significantly increased attraction to this fruit by tomato-trained wasps, including those liberated freely in the environment. These results, showing consistency of learning at multiple spatial scales, gives confidence to the many laboratory-based learning studies which are extrapolated to the field without testing. The experiment also provides direct experimental support for the proposed practice of enhancing the quality of inundatively released parasitoids through associative learning.  相似文献   

14.
K. Mather 《Chromosoma》1939,1(1):119-129
Summary The addition of an extra chromosome, in particular the short arm of chromosome V, inZea Mays is shown to lead to (a) less competition for chiasmata between the chromosomes, (b) an increase in the number of chiasmata formed. These effects are in accordance with the hypothesis of control by an effective upper limit to the number of chiasmata which may be formed in any nucleus. The addition of an extra chromosome raises the upper limit of the number of possible chiasmata. This is further supported by the fact that the increase in chiasma formation is not confined to the trisomic chromosome but is, as far as can be judged, shared by all the bivalents. The bearing of these findings on chiasma frequency studies of polyploid series is briefly discussed.  相似文献   

15.
16.
A continent-island model is studied in which differences are initially present at a gene locus with assortative mating (which causes prezygotic reproductive isolation) and at one or two unlinked selected loci, (which cause zygotic reproductive isolation). This model simulates secondary contact between two populations which have diverged allopatrically at loci which control isolating mechanisms. Two different models of prezygotic isolation and three different models of zygotic isolation are studied. The analysis is focused on those conditions under which differentiation is not lost through the swamping effect of gene now. In each case the critical migration rate (mc) below which differences can be maintained is found. Results depend on the degree of assortative mating, on the level of selection on the genes involved, and on the particular models of reproductive isolation considered. However, in all the models, for high values of such parameters the two isolating mechanisms interact strongly, and consequently the stability of the difference at each locus (as measured by mc) is noticeably influenced by the presence of the difference at the other locus (or loci). The nature and strength of the effects of this interaction differ according to whether or not there is selection on the assortative mating locus and whether selection against hybrids or directional selection is hypothesized.  相似文献   

17.
Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D. simulans is more active on secondary than on primary alcohols, although ethanol is its only known physiological substrate. Several secondary alcohols were used to determine the kinetic parameters kcat and Km. The results of these experiments indicate that the substrate-binding region of the enzyme allows optimal binding of a short ethyl side-chain in a small binding pocket, and of a propyl or butyl side-chain in large binding pocket, with stereospecificity for R(−) alcohols. At a high concentration of R(−) alcohols substrate activation occurs. The kcat and Km values determined under these conditions are about two-fold, and two orders of magnitude, respectively, higher than those at low substrate concentrations. Sequence alignment of several SDRs of known, and unknown three-dimensional structures, indicate the presence of several conserved residues in addition to those involved in the catalyzed reactions. Structural roles of these conserved residues could be derived from observations made on superpositioned structures of several SDRs with known structures. Several residues are conserved in tetrameric SDRs, but not in dimeric ones. Two halohydrin-halide-lyases show significant homology with SDRs in the catalytic domains of these enzymes, but they do not have the structural features required for binding NAD+. Probably these lyases descend from an SDR, which has lost the capability to bind NAD+, but the enzyme reaction mechanisms may still be similar. Received: 23 May 2000 / Accepted: 4 January 2001  相似文献   

18.
Isoprenoids are produced in all organisms but are especially abundant and diverse in plants. Two separate pathways operate in plant cells to synthesize prenyl diphosphate precursors common to all isoprenoids. Cytosolic and mitochondrial precursors are produced by the mevalonic acid (MVA) pathway whereas the recently discovered methylerythritol phosphate (MEP) pathway is located in plastids. However, both pathways may participate in the synthesis of at least some isoprenoids under certain circumstances. Although genes encoding all the enzymes from both pathways have already been cloned, little is known about the regulatory mechanisms that control the supply of isoprenoid precursors. Genetic approaches are providing valuable information on the regulation of both pathways. Thus, recent data from overexpression experiments in transgenic plants show that several enzymes share control over the metabolic flux through the MEP pathway, whereas a single regulatory step has been proposed for the MVA pathway. Identification of Arabidopsis thaliana mutants that are resistant to the inhibition of the MVA and the MEP pathways is a promising approach to uncover mechanisms involved in the crosstalk between pathways. The characterization of some of these mutants impaired in light perception and signaling has recently provided genetic evidence for a role of light as a key factor to modulate the availability of isoprenoid precursors in Arabidopsis seedlings. The picture emerging from recent data supports that a complex regulatory network appears to be at work in plant cells to ensure the supply of isoprenoid precursors when needed.  相似文献   

19.
Postprandial blood glucose control is the major goal in the treatment of diabetes. Here, we investigated the effect of sea cucumber saponins (SCSs) on postprandial blood glucose levels. SCS inhibited yeast as well as rat intestinal α-glucosidase activity in a dose-dependent manner and showed better inhibition of yeast α-glucosidases compared to the positive control. Further studies were performed using ICR mice treated with SCS and starch or SCS alone by oral gavage. Unexpectedly, SCS increased postprandial blood glucose levels a short time (1 h) after oral gavage. The serum corticosterone (CORT) level showed a consistent correlation with glucose levels. In vitro experiments confirmed that SCS treatment increased the secretion of CORT in the Y1 adrenal cell line. Overall, these studies demonstrated that SCS gavage could inhibit α-glucosidase activity but cannot attenuate postprandial blood glucose level within short time periods. The underlying mechanisms are probably related to increased serum CORT levels.  相似文献   

20.
Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age‐related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age‐associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high‐resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号