首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
The corn pathogen Ustilago maydis requires its host plant maize for development and completion of its sexual cycle. We have identified the fungal mig2-1 gene as being specifically expressed during this biotrophic stage. Intriguingly, mig2-1 is part of a gene cluster comprising five highly homologous and similarly regulated genes designated mig2-1 to mig2-5. Deletion analysis of the mig2-1 promoter provides evidence for negative and positive regulation. The predicted polypeptides of all five genes lack significant homologies to known genes but have characteristic N-terminal secretion sequences. The secretion signals of mig2-1 and mig2-5 were shown to be functional, and secretion of a full length Mig2-1-eGFP fusion protein to the extracellular space was demonstrated. The central domains of the Mig2 proteins are highly variable whereas the C-termini are strongly conserved and share a characteristic pattern of eight cysteine residues. The mig2 gene cluster was conserved in a wide collection of U. maydis strains. Interestingly, some U. maydis isolates from South America had lost the mig2-4 gene as a result of a homologous recombination event. Furthermore, the related Ustilago scitaminea strain, which is pathogenic on sugar cane, appears to lack the mig2 cluster. We describe a model of how the mig2 cluster might have evolved and discuss its possible role in governing host interaction.  相似文献   

3.
4.
The maize smut fungus Ustilago maydis switches from yeast to hyphal growth to infect maize (Zea mays) plants. This switching is promoted by mating of compatible cells and seems to be required for plant penetration. Although many genes distinctively expressed during this dimorphic switch have been identified and shown to be essential for the infection process, none seems to be explicitly required for polar growth control. Here, we report the characterization of pcl12, encoding a cyclin that interacts specifically with Cdk5, an essential cyclin-dependent kinase with regulatory roles in morphogenesis in U. maydis. Pcl12 fulfills the requirements to be a virulence-specific regulator of polar growth in U. maydis. First, pcl12 expression is induced during the pathogenic development. Secondly, Pcl12 is sufficient to induce hyperpolarized growth in U. maydis cells, as haploid cells overexpressing pcl12 in axenic conditions produce filaments that were morphologically indistinguishable from those produced during the infection process. Finally, cells defective in pcl12 showed impaired polar growth during the formation of the b-dependent filament, the induction of the conjugation tubes, or the formation of a promycelium in spore germination. However, in spite of this pivotal role during morphogenesis, pcl12 mutants were virulent. We discuss the implications of these results for the role of polar growth during the infection process.  相似文献   

5.
6.
7.
The ascomycete Claviceps purpurea (ergot) is a biotrophic flower pathogen of rye and other grasses. The deleterious toxic effects of infected rye seeds on humans and grazing animals have been known since the Middle Ages. To gain further insight into the molecular basis of this disease, we generated about 10 000 expressed sequence tags (ESTs)—about 25% originating from axenic fungal culture and about 75% from tissues collected 6–20 days after infection of rye spikes. The pattern of axenic vs. in planta gene expression was compared. About 200 putative plant genes were identified within the in planta library. A high percentage of these were predicted to function in plant defence against the ergot fungus and other pathogens, for example pathogenesis-related proteins. Potential fungal pathogenicity and virulence genes were found via comparison with the pathogen–host interaction database (PHI-base; http://www.phi-base.org ) and with genes known to be highly expressed in the haustoria of the bean rust fungus. Comparative analysis of Claviceps and two other fungal flower pathogens (necrotrophic Fusarium graminearum and biotrophic Ustilago maydis ) highlighted similarities and differences in their lifestyles, for example all three fungi have signalling components and cell wall-degrading enzymes in their arsenal. In summary, the analysis of axenic and in planta ESTs yielded a collection of candidate genes to be evaluated for functional roles in this plant–microbe interaction.  相似文献   

8.
9.
Germins and germin-like proteins (GLPs) constitute a large and highly diverse family of ubiquitous plant cell wall proteins. These proteins seem to be involved in many developmental stages and stress-related processes, but their exact participation in these processes generally remains obscure. In Pinus caribaea Morelet, the PcGER1 gene is expressed uniquely in embryo tissues, and encodes a GLP ionically bound to the walls of pine embryo cells maintained in 2,4-D-containing medium. We have cloned a genomic fragment including the 1520 bp 5'-upstream promoter region of PcGER1 . This sequence contains, in its 1200 bp distal part, several cis elements (e.g. SEF4, 60 kDa protein, ABA RE and Dof recognition sites) present in genes responding to hormones and/or expressed in embryo or seed tissues, or during germination. The PcGER1 promoter sequence was cloned upstream of the GUS ( β -glucuronidase) reporter gene and transferred to tobacco Bright Yellow 2 (BY-2) cells via Agrobacterium tumefaciens -mediated transformation. Promoter activity and growth performances of transgenic asynchronous cell suspensions were analysed in the presence or absence of 2,4-D and/or BA. Optimal growth, maximum cell-wall yield and PcGER1 promoter activity were observed in the presence of 2,4-D and BA at day 4, the end of the exponential growth phase where 70–75% cells have a 2C DNA content. Analysis of promoter activity during the cell cycle in an aphidicoline-synchronized culture suggested that the expression is maximum in G1 cells. We also showed that under optimal growth conditions, 5' promoter deletions decreased the activity of the reporter gene. We discuss the function of this gene with regards to cell growth.
Accession number : The PcGER1 promoter sequence was submitted to the genbank database under the accession number AY077704 .  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Our understanding of how cell cycle regulation and virulence are coordinated during the induction of fungal pathogenesis is limited. In the maize smut fungus Ustilago maydis, pathogenesis and sexual development are intricately interconnected. Furthermore, the first step in the infection process is mating, and this is linked to the cell cycle. In this study, we have identified a new G1 cyclin gene from U. maydis that we have named cln1. We investigated the roles of Cln1 in growth and differentiation in U. maydis and found that although not essential for growth, its absence produces dramatic morphological defects. We provide results that are consistent with Cln1 playing a conserved role in regulating the length of G1 and cell size, but also additional morphological functions. We also present experiments indicating that the cyclin Cln1 controls sexual development in U. maydis. Overexpression of cln1 blocks sexual development, while its absence enables the cell to express sexual determinants in conditions where wild-type cells were unable to initiate this developmental program. We conclude that Cln1 contributes to negative regulation of the timing of sexual development, and we propose the existence of a negative crosstalk between mating program and vegetative growth that may help explain why these two developmental options are incompatible in U. maydis.  相似文献   

18.
19.
Nutrient sensing plays important roles in fungal development in general, and specifically in critical aspects of pathogenicity and virulence, for both animal and plant pathogens. Dimorphic pathogens such as the phytopathogenic smut fungi, Ustilago maydis and Microbotryum violaceum, must switch from a yeast-like to a filamentous form in order to cause disease. Two genes encoding methylammonium permeases (MEPs) were identified from each of these latter fungi and all the encoded proteins were most similar to Mep2p, the high-affinity permease from Saccharomyces cerevisiae that plays a direct role in pseudohyphal or filamentous growth for that organism. This is the first report of MEPs from pathogenic fungi. The two genes from U. maydis and one of the genes from M. violaceum were expressed in diploid S. cerevisiae mutants deleted for all three mep genes (mep1mep2mep3). Each of the heterologous genes could complement the severe growth defect of the S. cerevisiae mutant on low ammonium. Moreover, the U. maydis ump2 gene, initially detected as an upregulated gene in budding cells, was also able to complement the pseudohyphal defect characteristic of the mutant yeast. This gene is thus one of few heterologous MEP genes capable of efficiently restoring pseudohyphal growth in yeast. For U. maydis, disruption of ump2 eliminated the filamentous phenotype of haploid cells on low ammonium, while ump1 disruption only slightly reduced methylamine uptake. The most significant drop in methylamine uptake was seen for the ump2 and the ump1ump2 double mutants. Moreover, when grown in liquid medium, the ump1ump2 double mutant aggregated and sedimented. Also, the importance of a putative site for phosphorylation by protein kinase A was investigated in both Mep2p and Ump2p via site-directed mutagenesis of the respective genes. A mutation predicted to prevent phosphorylation of either protein, still allowed each to provide growth on low ammonium, but eliminated their abilities to provide pseudohyphal growth for the S. cerevisiae triple mutant. These findings allow us to present a model of how ammonium transporters play a role in regulating dimorphic growth in fungi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号