首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
pp54 microtubule-associated protein-2 (MAP-2) kinase, a recently discovered protein serine/threonine kinase (Kyriakis, J., and Avruch, J. (1990) J. Biol. Chem. 265, 17355-17363), is shown to contain immunoreactive phosphotyrosine residues. Treatment with recombinant rat brain protein tyrosine phosphatase-1 deactivates pp54 MAP-2 kinase, concomitant with the removal of phosphotyrosine residues. Protein (serine/threonine) phosphatase-1 also deactivates pp54 MAP-2 kinase in a specific fashion. pp54 MAP-2 kinase joins pp42 MAP-2 kinase and cdc2/maturation-promoting factor as one of only three serine/threonine protein kinases known to be regulated by phosphorylation at both tyrosine and, independently, at serine/threonine residues. In view of these shared regulatory properties, a role for pp54 MAP-2 kinase in the control of cell division is likely.  相似文献   

2.
3.
Xenopus MAP kinase activator, a 45 kDa protein, has been shown to function as a direct upstream factor sufficient for full activation and both tyrosine and serine/threonine phosphorylation of inactive MAP kinase. We have now shown by using an anti-MAP kinase activator antiserum that MAP kinase activator is ubiquitous in tissues and is regulated post-translationally. Activation of MAP kinase activator is correlated precisely with its threonine phosphorylation during the oocyte maturation process. It is a key question whether MAP kinase activator is a kinase or not. We have shown that Xenopus MAP kinase activator purified from mature oocytes is capable of undergoing autophosphorylation on serine, threonine and tyrosine residues. Dephosphorylation of purified activator by protein phosphatase 2A treatment inactivates its autophosphorylation activity as well as its activator activity. Thus, Xenopus MAP kinase activator is a protein kinase with specificity for both serine/threonine and tyrosine. Partial protein sequencing of purified activator indicates that it contains a sequence homologous to kinase subdomains VI and VII of two yeast protein kinases, STE7 and byrl.  相似文献   

4.
The addition of phorbol esters to U937 leukemic cells stimulates the phosphorylation of c-Jun on serines 63 and 73. To isolate the protein kinase which stimulates this phosphorylation, we have used heparin-Sepharose chromatography followed by affinity chromatography over glutathione-Sepharose beads bound with a fusion protein of glutathione S-transferase and amino acids 5-89 of c-Jun (GST-c-Jun). Using this procedure we purify a 67-kDa protein which is capable of phosphorylating GST-c-Jun as well as the complete c-Jun protein. By making mutations in serines 63 and 73 and then creating a fusion protein with GST (GST-c-Jun mut), we demonstrate that this protein kinase specifically phosphorylates these sites in the c-Jun amino terminus. Treatment of purified c-Jun amino-terminal protein kinase (cJAT-PK) with phosphatase 2A inhibits its ability to phosphorylate GST-c-Jun. This inactivated enzyme can be reactivated by phosphorylation with protein kinase C (PKC), although PKC is not capable of phosphorylating the GST-c-Jun substrate. Because v-Jun cannot be phosphorylated in vivo, we compared the ability of cJAT-PK to bind to GST-v-Jun or GST-c-Jun mut. The cJAT-PK bound 50-fold better to GST-c-Jun mut than GST-v-Jun suggesting that the delta domain which is missing in v-Jun plays a role in binding the cJAT-PK. These results suggest that there is a protein kinase cascade mediated by protein phosphatases and PKC which regulates c-Jun phosphorylation.  相似文献   

5.
Mitogen-activated protein kinase (p42mapk) becomes transiently activated after treatment of serum-starved murine Swiss 3T3 cells or EL4 thymocytes with a diversity of mitogens. Similarly, a meiosis-activated protein kinase (p44mpk) becomes stimulated during maturation of sea star oocytes induced by 1-methyladenine. Both p42mapk and p44mpk have been identified as protein-serine/threonine kinases that are activated as a consequence of their phosphorylation. Because homologous protein kinases may play essential roles in both mitogenesis and oogenesis, we have compared in detail the biochemical properties of these two kinases. We find that these kinases are highly related based on their in vitro substrate specificities, sensitivity to inhibitors, and immunological cross-reactivity. However, they differ in apparent molecular weight and can be separated chromatographically, indicating that the two enzymes are distinct. Furthermore, in the course of this investigation, we have identified a 44-kDa protein kinase in mitogen-stimulated Swiss mouse 3T3 cells and EL4 thymocytes that co-purifies with p44mpk and thus appears to be a closer homolog of the sea star enzyme. Analysis of these protein kinases clarifies the relationships between a set of tyrosine-phosphorylated 41-45-kDa proteins present in mitogen-stimulated cells (Martinez, R., Nakamura., K. D., and Weber, M. J. (1982) Mol. Cell. Biol. 2, 653-655; Cooper, J. A., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37), two myelin basic protein kinases identified in epidermal growth factor-treated Swiss mouse 3T3 cells (Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E. G. (1990) J. Biol. Chem. 265, 11487-11494), and p42mapk. Our work points to the existence of a group of related serine/threonine protein kinases, regulated by tyrosine phosphorylation and functioning at different stages of the cell cycle.  相似文献   

6.
The Hedgehog (Hh) signaling molecule is required for the development of numerous tissues in Drosophila. Within the cell, Hh signal transduction utilizes a large protein complex consisting of the Fused (Fu), Costal2 (Cos2), and Cubitis interruptus (Ci) proteins, but the functional interactions between these proteins are still largely uncharacterized. Using a baculovirus system, we demonstrate that the serine/threonine kinase Fu phosphorylates the kinesin-like protein Cos2 when coexpressed with Cos2. Coexpression of Cos2 and a kinase-inactive version of Fu eliminates the majority of Cos2 phosphorylation. We then show that the primary Fu-induced phosphorylation site of Cos2 is serine 572, whereas serine 931 is phosphorylated to a lesser extent. Mutation of serine 572 to alanine eliminates most, but not all, specific phosphopeptides of Cos2 when coexpressed with Fu. We also demonstrate that the phosphorylation pattern of Cos2 produced by baculovirus coexpression with kinase-dead Fu is almost identical to the phosphorylation pattern of Cos2 isolated from unstimulated S2 cells. Finally, the phosphorylation pattern of Cos2 produced by baculovirus coinfection with wild-type Fu is almost identical to that of Cos2 isolated from S2 cells stimulated by Hh, indicating that phosphorylation of serines 572 and 931 is a genuine Hh signaling event. This study clarifies the unique functions of Fu and Cos2 in Hh signal transduction and identifies only the second known phosphorylation site of a kinesin-like molecule.  相似文献   

7.
Using PCR technology, we have cloned parts of three developmentally regulated putative serine/threonine kinases from Dictyostelium. All show significant homology to members of the cAMP-dependent protein kinase A/protein kinase C subfamilies. A genomic clone encoding one of these, DdPK3, has been isolated and sequenced. The open reading frame encodes a protein of 648 amino acids with the conserved kinase domain in the C-terminal half. The protein encoded by this gene is unusual in that it contains long homopolymer runs in the N-terminal half of the protein, including a long run of 88 amino acids in which 73 are glutamine residues. To examine the function of DdPK3, a gene disruption was created via homologous recombination. Ddpk3- cells do not aggregate by themselves but will co-aggregate with wild-type cells. However, after aggregation these cells are 'sloughed off' and do not proceed further through development, but are found as a discrete mass alongside the fruiting body formed by the wild-type cells. Analysis of signal transduction pathways indicates that cAMP pulse-induced expression of aggregation stage-specific genes is normal in Ddpk3- cells, as is induction of the prestalk gene Ddras in single cell assays. However, cAMP induction of the late promoters of cAMP receptor cAR1 and of two prespore-specific genes is absent under similar conditions. These cells show normal activation of adenylate cyclase and normal phosphorylation of the G alpha protein G alpha 2 in response to cAMP. The possible role of DdPK3 in Dictyostelium development is discussed.  相似文献   

8.
9.
10.
In Streptomyces fradiae, calcium ions induce alterations in intensity and specificity of the secondary metabolism and stimulate aerial mycelium formation and sporulation. Using in vitro labeling, we demonstrate that in S. fradiae in the late exponential growth phosphorylation of 65-kDa membrane-associated protein is also influenced by Ca(2+) added exogenously. Calcium ions at physiological concentration stimulate intensive Ca(2+)-dependent phosphorylation of 65-kDa protein at multiple sites on serine, threonine, and tyrosine residues. Assay of protein kinases in situ demonstrated in the fraction of membrane-associated proteins the presence of two autophosphorylating protein serine/threonine kinases with molecular masses of 127 kDa and 65 kDa. Autophosphorylation of both proteins is also Ca(2+)-dependent.  相似文献   

11.
Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser473 in the hydrophobic motif, along with Thr308 in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr308, but the kinase(s) responsible for phosphorylating Akt at Ser473 (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser473 phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser473 in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.  相似文献   

12.
Mitogen-activated protein kinase kinase 1 (MKK1), a dual-specificity tyrosine/threonine protein kinase, has been shown to be phosphorylated and activated by the raf oncogene product as part of the mitogen-activated protein kinase cascade. Here we report the phosphorylation and inactivation of MKK1 by phosphorylation on threonine 286 and threonine 292. MKK1 contains a consensus phosphorylation site for p34cdc2, a serine/threonine protein kinase that regulates the cell division cycle, at Thr-286 and a related site at Thr-292. p34cdc2 catalyzes the in vitro phosphorylation of MKK1 on both of these threonine residues and inactivates MKK1 enzymatic activity. Both sites are phosphorylated in vivo as well. The data presented in this report provide evidence that MKK1 is negatively regulated by threonine phosphorylation.  相似文献   

13.
A protein kinase, termed microtubule-associated protein (MAP) kinase, which phosphorylates microtubule-associated protein 2 (MAP-2) in vitro and is stimulated 1.5-3-fold in extracts from insulin-treated 3T3-L1 cells has been identified (Ray, L.B., and Sturgill, T.W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1502-1506). Here, we describe chromatographic properties of MAP kinase and provide biochemical characterization of the partially purified enzyme. Isolation of the enzyme is facilitated by its unusually high affinity for hydrophobic interaction chromatography matrices. The molecular weight of the partially purified enzyme was determined to be 35,000 by gel filtration chromatography and 37,000 by glycerol gradient centrifugation. MAP kinase activity of chromatographic fractions correlated precisely with the presence of a 40-kDa phosphoprotein detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. MAP kinase has a Km of 7 microM for ATP and does not utilize GTP. Acetyl-CoA carboxylase, ATP citrate-lyase, casein, histones, phosvitin, protamine, and ribosomal protein S6 were all poor substrates relative to MAP-2. The enzyme is inhibited by fluoride and beta-glycerol phosphate but not by heparin. These properties of MAP kinase distinguish it from protein kinases previously described in the literature.  相似文献   

14.
The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.  相似文献   

15.
Neuronal functions of the novel serine/threonine kinase Ndr2   总被引:1,自引:0,他引:1  
We have identified a novel member of the Ndr subfamily of serine/threonine protein kinases, Ndr2, as a gene product that is induced in the mouse amygdala during fear memory consolidation and examined a possible function of this kinase in neural differentiation. Expression of Ndr2 mRNA was detected in various cortical and subcortical brain regions, as well as non-neuronal tissues. Its expression in the amygdala was increased 6 h after Pavlovian fear conditioning training and returned to control levels within 24 h. To study intracellular localization and functions of Ndr2, EGFP::Ndr2 fusion proteins were expressed in rat pheochromocytoma (PC12) cells and acutely isolated cortical neurons, thereby revealing an association of Ndr2 with the actin cytoskeleton in somata, neurites and filopodia, in spines and at sites of cell contact. Co-precipitation and pull-down experiments support this finding. Evidence for an involvement of Ndr2 in actin-mediated cellular functions further comes from the observation of decreased cell spreading and changes in neurite outgrowth that were associated with protein serine phosphorylation in transfected PC12 cells. Together, our data suggest that Ndr2 is an interesting candidate gene for the regulation of structural processes in differentiating and mature neuronal cells.  相似文献   

16.
17.
Murine protein serine/threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family that plays an important role in various cellular processes, including cell cycle, signaling pathways, and self-renewal of stem cells. Here we demonstrate a functional association between MPK38 and apoptosis signal-regulating kinase 1 (ASK1). The physical association between MPK38 and ASK1 was mediated through their carboxyl-terminal regulatory domains and was increased by H(2)O(2) or tumor necrosis factor alpha treatment. The use of kinase-dead MPK38 and ASK1 mutants revealed that MPK38-ASK1 complex formation was dependent on the activities of both kinases. Ectopic expression of wild-type MPK38, but not kinase-dead MPK38, stimulated ASK1 activity by Thr(838) phosphorylation and enhanced ASK1-mediated signaling to both JNK and p38 kinases. However, the phosphorylation of MKK6 and p38 by MPK38 was not detectable. In addition, MPK38-mediated ASK1 activation was induced through the increased interaction between ASK1 and its substrate MKK3. MPK38 also stimulated H(2)O(2)-mediated apoptosis by enhancing the ASK1 activity through Thr(838) phosphorylation. These results suggest that MPK38 physically interacts with ASK1 in vivo and acts as a positive upstream regulator of ASK1.  相似文献   

18.
Protein kinase casein kinase-2 (CK2) is a spontaneously active, ubiquitous, and pleiotropic enzyme that phosphorylates seryl/threonyl residues specified by multiple negatively charged side chains, the one at position n + 3 being of crucial importance (minimum consensus S/T-x-x-E/D/S(P)/T(P). Recently CK2 has been reported to catalyze phosphorylation of the yeast nucleolar immunophilin Fpr3 at a tyrosyl residue (Tyr(184)) fulfilling the consensus sequence of Ser/Thr substrates (Wilson, L.K., Dhillon, N., Thorner, J., and Martin, G.S. (1997) J. Biol. Chem. 272, 12961-12967). Here we show that, by contrast to other tyrosyl peptides fulfilling the consensus sequence for CK2, a peptide reproducing the sequence around Fpr3 Tyr(184) (DEDADIY(184)DEEDYDL) is phosphorylated by CK2, albeit with much higher K(m) (384 versus 4. 3 microM) and lower V(max) (8.4 versus 1,132 nmol.min(-1).mg(-1)) than its derivative with Tyr(184) replaced by serine. The replacement of Asp at position n + 1 with alanine and, to a lesser extent, of Ile at n - 1 with Asp are especially detrimental to tyrosine phosphorylation as compared with serine phosphorylation, which is actually stimulated by the Ile to Asp modification. In contrast the replacement of Glu at n + 3 with alanine almost suppresses serine phosphorylation but not tyrosine phosphorylation. It can be concluded that CK2 is capable to phosphorylate, under special circumstances, tyrosyl residues, which are specified by structural features partially different from those that optimize Ser/Thr phosphorylation.  相似文献   

19.
The gene pkwA coding for a typical WD-repeat protein was found in the chromosome of the bacterium Thermomonospora curvata CCM 3352. Until now WD-repeat proteins were through to be confined to eukaryotes.  相似文献   

20.
During investigations of the regulation of tyrosine hydroxylase (TH) by protein phosphorylation, a novel protein kinase activity has been discovered in rat pheochromocytoma. Originally detected as a trace contaminant in preparations of highly purified TH, this novel kinase activity phosphorylated TH at serine 8 in the proline-rich amino-terminal region of the enzyme. This particular site is not phosphorylated by, nor is the amino acid sequence surrounding this site selective for, any of the classical (i.e. well characterized) protein kinases. In this report, we describe the identification, characterization, and partial purification of this novel protein kinase. By utilizing a synthetic peptide corresponding to the amino-terminal region of TH, a selective assay for this protein kinase was developed. The kinase activity utilized ATP and magnesium, although GTP could also be utilized as a phosphate donor. The kinase activity was found to co-purify with TH activity through ammonium sulfate precipitation and DEAE-cellulose chromatography and could be only partially resolved from TH by heparin-agarose affinity chromatography. Substantial kinase activity could be resolved from TH by phosphocellulose chromatography. The novel kinase migrates as a protein with a molecular mass of approximately 45 kDa on gel permeation chromatography as well as sucrose density gradient centrifugation. Studies of site specificity indicate that this Ser/Thr kinase activity appears to be directed by an adjacent (carboxyl-terminal) proline residue, exhibiting a minimal recognition sequence of -X-Ser/Thr-Pro-X-. In addition to TH, this proline-directed protein kinase will also phosphorylate synapsin I, histone H1, and glycogen synthase, suggesting that this kinase may have multiple substrates in vivo. Additional findings indicate that the activity of proline-directed protein kinase is increased transiently in PC12 pheochromocytoma cells following treatment with nerve growth factor. Distinctions between this novel kinase and other well characterized protein kinases can be made on the basis of phosphorylation site specificity, chromatographic behavior, and physical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号