首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lacosamide has been submitted for regulatory approval in the United States and Europe for the treatment of epilepsy. Previous synthetic methods did not permit the elaboration of the structure-activity relationship (SAR) for the 3-oxy site in lacosamide. We report an expedient five-step stereospecific synthesis for N-benzyl (2R)-2-acetamido-3-oxysubstituted propionamide analogs beginning with D-serine methyl ester. The procedure incorporated alkyl (e.g. methyl, primary, secondary, and tertiary) and aryl groups at this position. The SAR for the 3-oxy site showed maximal activity in animal seizure models for small 3-alkoxy substituents.  相似文献   

2.
Reaction of benzyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-mesyl-alpha-D-galactopyran oside with cesium floride gave benzyl 2-acetamido-3,6-anhydro-4-O-benzyl-2-deoxy-alpha-D-galactopyranoside instead of the desired 6-fluoro derivative. Acetonation of benzyl 2-acetamido-2-deoxy-6-O-mesyl-alpha-D-galactopyranoside gave the corresponding 3,4-O-isopropylidene derivative. The 6-O-mesyl group was displaced by fluorine with cesium fluoride in boiling 1,2-ethanediol, and hydrolysis and subsequent N-acetylation gave the target compound. In another procedure, treatment of 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-alpha-D-galactose with N-(diethylamino)sulfur trifluoride gave 2-acetamido-1,3,4-tri-O-acetyl-2,6-dideoxy-6-fluoro-D-galactose which, on acid hydrolysis followed by N-acetylation, gave 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose.  相似文献   

3.
Treatment of 2-acetamido-2-deoxy-D-mannono-1,4-lactone with dicyclohexylamine in ethanolic solution afforded an unsaturated 1,4-lactone, 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,4-lactone (1), in good yield. 2-Acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,4-lactone (2) was similarly prepared from 2-acetamido-2-deoxy-D-galactono-1,4-lactone. An unsaturated 1,5-lactone, 2-acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,5-lactone (4), was obtained through the oxidation of 2-acetamido-2-doexy-4,6-0-isopropylidene-D-galactopyranose with silver carbonate on Celite, followed by mild hydrolysis. The inhibitory activity of four isomeric 2-acetamido-2,3-dideoxy-D-hex-2-enonolactones [1, 2, 4, and 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (3)] was assayed against 2-acetamido-2-deoxy-beta-D-glucosidase from bull epididymis. Only the erythro lactones 1 and 3 are weak competitive inhibitors, whereas the threo lactones 2 and 4 are practically inactive. The 1,4-lactone 1 inhibited 2-acetamido-2-deoxy-beta-D-glucosidase more strongly than the 1,5-lactone 3. The lactones 1-4 were found to be quite stable in aqueous solution or under inhibitory-assay conditions. In addition, two 2-acetamido-2-deoxy-D-glycals, 2-acetamido-1,5-anhydrohex-1-enitol (7) were tested; both are 10 times as active as 1.  相似文献   

4.
4-Deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose were synthesized and evaluated as inhibitors of glycoconjugate biosynthesis. Methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside (11) showed a reduction in [3H]GlcN and [14C]Leu incorporation into hepatocyte cellular glycoconjugates by 89 and 88%, of the control cells, respectively, at 20 mM, whereas the free sugars, 2-acetamido-2,4-dideoxy-alpha,beta-D-xylo-hexopyranoses (15), showed a reduction of [3H]GlcN and [14C]Leu incorporation by 75 and 64%, respectively, at 20 mM. The acetylated analogues of 11 and 15, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-beta-D-xylo-hexopyranoside and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha,beta-D-xylo-hexopyra noses, showed a greater inhibition of [3H]GlcN and [14C]Leu incorporation at 1 mM compared with their non-acetylated counterparts, but were toxic to hepatocytes at concentrations of 10 and 20 mM. Corresponding derivatives of 2-acetamido-2,4-dideoxy-L-threo-pentopyranose showed no biological effect up to 20 mM, suggesting that the C-6 substituent is important for the biological activity.  相似文献   

5.
A method has been studied for the determination of the position of the linkage of the 2-acetamido-2-deoxy-D-galactose and 2-acetamido-2-deoxy-D-glucose residues in oligosaccharides and glycoproteins that is based on the borohydride reduction of the reducing terminal residues to the corresponding alditol derivatives periodate oxidation, borohydride reduction, hydrolysis (eventually followed by borohydride reduction), separation of the fragments as per-O-(trimethylsilyl) or per-O-(trifluoroacetyl) derivatives, and identification of the fragments as derivatives of 2-acetamido-2-deoxyglycerol, 2-acetamido-2-deoxy-L-threitol, 2-acetamido-2-deoxy-L-arabinitol, 2-acetamido-2-deoxy-D-xylitol, 2-acetamido-2-deoxy-D-galactitol, and 2-acetamido-2-deoxy-D-glucitol by gas-liquid chromatography-mass spectrometry. New syntheses for the standard compounds 2-acetamido-2-deoxy-L-threitol and 2-acetamido-2-deoxy-D-xylitol are described.  相似文献   

6.
2-Acetamido-1-N-(L-aspart-4-oyl)-2-deoxy-beta-D-glucopyranosyla mine (1) was used as a model glycopeptide to study the hydrazinolysis-N-reacetylation procedure. The major, initial product was the beta-acetohydrazide derivative of 2-acetamido-2-deoxy-D-glucose (2) which gave 2-acetamido-2-deoxy-D-glucose (5) after exposure to acidic conditions. Very mild conditions of hydrolysis of 2 gave a 75-80% overall yield of 5 from 1 after the hydrazinolysis-N-reacetylation procedure. Several other minor compounds were detected which were not converted into 5 upon mild acid hydrolysis, indicating that 20-25% of product cannot be recovered as 5 at the reducing end of oligosaccharides.  相似文献   

7.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

8.
A method for the colorimetric determination of 2-acetamido-2-deoxy-D-galactose was developed. The procedure is based on the high reactivity of the aldehyde group of this amidosugar with pentane-2,4-dione in anhydrous alkaline conditions. The product of reaction was crystallized and the structure 1-C-acetonyl-2-acetamido-2-deoxy-D-galactitol was deduced from chemical evidence. When the N-acetyl group of this compound is split off by hydrolysis, the formation of pyrrole groups ensues by condensation of the free amino group with the carbonyl group of the chain at C-1. 2-Methylpyrrole was isolated by steam distillation after mild alkaline hydrolysis and estimated by reaction with p-dimethylaminobenzaldehyde. A more complex pyrrole is formed during acid hydrolysis under the conditions used in the direct Ehrlich reaction.  相似文献   

9.
The levels of hexosaminidase A activity in cultivated fibroblasts of two patients with GM2-gangliosidosis were close to the normal range with 4-methylumbelliferyl-beta-D-2-acetamido-2-deoxyglucopyranoside and 4-methylumbelliferyl-beta-D-2-acetamido-2-deoxygalactopyranoside as substrates, and the enzymes were normal in most parameters analyzed. However, the enzymes of both patients were almost completely inactive against two specific substrates for hexosaminidase A, rho-nitrophenyl-6-sulfo-2-acetamido-2-deoxy-beta-D-glucopyranoside, and ganglioside GM2 in the presence of GM2-activator. Fibroblast extracts of both patients showed normal hexosaminidase B and GM2-activator activity, the latter was strongly decreased in two cases with variant AB. It is suggested that human hexosaminidase A may contain two different active sites which might be inactivated separately by different mutations.  相似文献   

10.
Hydrogenphosphonate method was used for synthesis of 4-nitrophenyl 2-acetamido-3- and 4-nitrophenyl 2-acetamido-4-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl phosphate)-2-deoxy-beta-D-glucopyranosides. The glycosides, phosphate diester fragments of the title bacteria capsular antigens, were obtained by H-phosphorylation of the suitably protected 2-acetamido-2-deoxy-beta-D-glucopyranosides with 2-acetamido-3,4,6-tri-O-benzoyl-2-deoxy-alpha-D-glucopyranosyl H-phosphonate in the presence of trimethylacetyl chloride followed by oxidation and deprotection.  相似文献   

11.
4-nitrophenyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha- and beta-D-mannopyranosides were prepared from methyl 4,6-O-benzylidene-alpha-D-glucopyranoside and 1,3,4,6-tetra-O-acetyl-alpha-D-glucopyranose, respectively. Chemoselective reduction of both azides with hydrogen sulfide readily afforded 4-nitrophenyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-alpha-D- and -beta-D-mannopyranosides in higher yields than reduction with triphenylphosphine or a polymer-supported triarylphosphine. Subsequent de-O-acetylation yielded 4-nitrophenyl 2-acetamido-2-deoxy-alpha-D-mannopyranoside and 4-nitrophenyl 2-acetamido-2-deoxy-beta-D-mannopyranoside in 20% and 44% overall yields, respectively.  相似文献   

12.
A novel fluorogenic substrate (methylumbelliferyl 2-acetamido-2-deoxy-β-d-lactoside) has been prepared enzymatically. A procedure has been developed for its use as a convenient and sensitive fluorogenic substrate for β-d-galactosidase assay with a potential for high substrate specificity. The merits of this new fluorogenic substrate for β-d-galactosidase assays are discussed, together with the potential of this approach for a wider range of enzyme activities.  相似文献   

13.
The syntheses of three analogues of N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine are described. N-(2-Acetamido-2-deoxy-beta-D-glucopyranosyl)succinamide was synthesized by the reaction of pentafluorophenyl succinamate with 2-acetamido-2-deoxy-beta-D-glucopyranosylamine. 2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosylamine was synthesized, and the complete assignment of the 1H NMR spectrum is given. Reaction of the protected beta-D-glycosylamine with L-malic acid chloralid in the presence of a coupling agent (EEDQ) gave N4-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-L-malamic acid chloralid that was deprotected two ways: (1) using ammonia, which gave N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-2-hydroxysuccinamide, and (2) using hydrazine, which gave N4-(2-acetamido-2-deoxy-1-D-glucopyranosyl)-L-2-hydroxysuccinamic acid hydrazide.  相似文献   

14.
Condensation of benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2- deoxy-3-O-[(R)-1-carboxyethyl]-alpha-D-glucopyranoside (2) and its 4-acetate (4) with L-alanyl-D-isoglutamine benzyl ester via the mixed anhydride method yielded N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-lacto yl)-L- alanyl-D-isoglutamine benzyl ester (5) and its 4-acetate (6), respectively. Condensation by the dicyclohexylcarbodi-imide-N-hydroxysuccinimide method converted 2 into benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl- 2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside 1',4-lactone (7). In the presence of activating agents, 7 underwent aminolysis with the dipeptide ester to give 5. Zemplén O-deacetylation of 5 and 6 led to transesterification and alpha----gamma transamidation of the isoglutaminyl residue to give N-(2-O-[benzyl 2-acetamido-6-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyr anosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (8) and -glutamine methyl ester (9). Treatment of 6 with MgO-methanol caused deacetylation at the GlcNAc residue to give a mixture of N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2- deoxy-beta-D-glucopyranosyl)-4-O-acetyl-2,3-dideoxy-alpha-D-glucopyra nosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (11) and -glutamine methyl ester (12). Benzyl or methyl ester-protection of peptidoglycan-related structures is not compatible with any of the reactions requiring alkaline media. Condensation of 2 with L-alanyl-D-isoglutamine tert-butyl ester gave N-(2-O-[benzyl 2-acetamido- 6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2,3-d ideoxy- alpha-D-glucopyranosid-3-yl]-(R)-lactoyl-L-alanyl-D-isoglutamine tert-butyl ester (16), deacetylation of which, under Zemplén conditions, proceeded without side-reactions to afford N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-la cotyl)-L- alanyl-D-isoglutamine tert-butyl ester (17).  相似文献   

15.
Reaction of p-nitrophenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (3) under the usual conditions, followed by removal of the p-methoxybenzylidene group and O-deacylation, produced crystalline p-nitrophenyl 2-acetamido-2-deoxy-3-O-beta-D-galactopyranosyl-beta-D-glucopyranoside (6). Starting from p-nitrophenyl 2-acetamido 3,4-di-O-acetyl-2-deoxy-beta-D-glucopyranoside, the synthesis of p-nitrophenyl 2-acetamido-2-deoxy-6-O-beta-D-galactopyranosyl-beta-D-glucopyranoside was also accomplished.  相似文献   

16.
Oxidation of 5-acetamido-4,8-anhydro-1,2,3,5-tetradeoxy-D-glycero-D-ido-non-1-enitol [3-C-(2-amino-2-deoxy-beta-D-glucopyranosyl)-1-propene] was studied to search for preparative routes to aminodeoxy didehydro nonulosonic acid derivatives. Since only moderate chiral induction was observed with osmium tetroxide dihydroxylation as well as with peracid epoxidation, the catalytic asymmetric dihydroxylation conditions were applied to give the stereocontrolled formation of 1,2-propanediol derivatives. The structures of these diastereoisomeric 1,2-propanediol derivatives were determined by X-ray crystallographic analyses. The formation of diastereoisomeric 1,2-propanediols also varied with the nature of 2-substituent on the aminodoexy glycosyl moiety. Thus 5-acetamido-4,8-anhydro-3,5-dideoxy-D-erythro-L-ido-nonitol [(2S)-3-C-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-1,2-propanediol] was obtained predominantly up to 70% from 3-C-(2-acetamido-2-deoxyglycosyl)-1-propene by the use of ADmixbeta reagent. The (2S)-propanediol derivative was transformed in a five-step reaction sequence to 2,3-didehydro-2,7-dideoxy-N-acetylneuraminic acid.  相似文献   

17.
The 2S albumin from the endosperm of castor seed (Ricinus communis L.) seed was reduced by thioredoxin from either wheat germ or Escherichia coli. The 2S protein is made up of a large (approx. 7 kDa) subunit that contains two intramolecular disulfides and a small (approx. 4 kDa) subunit that lacks intramolecular disulfides. The two subunits are joined by at least one intermolecular disulfide bond. Thioredoxin could be reduced either enzymically with NADPH and NADP-thioredoxin reductase or chemically with dithiothreitol. Reduced glutathione and glutaredoxin (from E. coli) were without effect. The ability of the 2S protein to undergo reduction by thioredoxin was demonstrated by a direct reduction procedure based on the fluorescent probe, monobromobimane, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and by an enzymatic procedure in which reduction is linked to activation of chloroplast NADP-malate dehydrogenase. Analyses indicated that thioredoxin actively reduced the intramolecular disulfides of the 2S large subunit, but was ineffective in reducing the intermolecular disulfide(s) that connect the large to the small subunit. These findings extend the role of thioredoxin to the reduction of a seed protein that is widely distributed in oil producing plants.Abbreviations DDT dithiothreitol - mBBr monobromobimane - NTR NADP-thioredoxin reductase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis This work was supported by a grant from the National Science Foundation.  相似文献   

18.
The syntheses of four analogues of N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine are described. Activated carboxylic acids were reacted with 2-acetamido-2-deoxy-beta-D-glucopyranosylamine. n-Butyric anhydride gave N-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-n-butyramide. 3-Chloropropionic anhydride was synthesized from 3-chloropropionic acid and gave N-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-chloropropionamide. Equilibration of the latter with ammonium bicarbonate gave N1-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-aminopropionamide. Succinimidyl isovalerate was synthesized and gave N-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-isovaleramide.  相似文献   

19.
Selective pivaloylation of 2-acetamido-2-deoxy-D-glucose, its methyl alpha- and beta-glycosides, and the methyl alpha-glycoside of N-acetyl-D-muramic acid under various conditions has been studied. The structures of the products were established by 1H-n.m.r. spectroscopy and acetylation. The orders of acylation, HO-6 greater than HO-3 greater than HO-1 greater than HO-4 for 2-acetamido-2-deoxy-D-glucose and HO-6 greater than HO-3 greater than HO-4 for its methyl glycosides, were established. Methyl 2-acetamido-2-deoxy-3,6-di-O-pivaloyl-alpha- and -beta-D-glucopyranosides and 2-acetamido-2-deoxy-1,3,4,6-tetra-O-pivaloyl-D-glucopyranose were hydrolysed by rabbit serum esterases.  相似文献   

20.
Kinetic measurements suggest that neighbouring acetamido-group participation occurs in the spontaneous hydrolysis and methanolysis of o-carboxyphenyl 2-acetamido-2-deoxy-β-D-glucopyranoside and in the spontaneous hydrolysis of 2,4-dinitrophenyl 2-acetamido-2-deoxy-β-D-glucopyranoside and 2-acetamido-2-deoxy-β-D-glucopyranosyl fluoride. The methanolyses of these compounds proceed with predominant retention of configuration which is also consistent with neighbouring acetamido-group participation. The oxazoline intermediate which would arise from such a process was detected during methanolysis of 2-acetamido-2-deoxy-β-D-glucopyranosyl fluoride in the presence of bases by n.m.r., i.r., and u.v. spectroscopy. Attempts to isolate the oxazoline were unsuccessful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号