首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have previously shown that mice with generalised lymphoproliferative disorder (gld) have increased bone mass in addition to autoimmune disease characterised by the accumulation of double negative (dn) T lymphocytes (CD3(+)CD4(-)CD8(-)CD45R(+)). To further explore the association of the immune disorder with the bone phenotype of gld mice, we established parabiotic circulation between gld and wild-type animals (C57BL/6, B6). One week after the surgery, the proportion of dn T lymphocytes increased in peripheral blood, bone marrow, spleen, and lymph nodes of wild-type members of the B6-gld parabiotic pair and decreased in tissues of gld pair members. The mixing of cells continued during four weeks of parabiosis. Number of osteoclast-like (OCL) cells in bone marrow cultures from a wild-type member of B6-gld parabiotic pair at the end of the first week decreased from 266+/-52 to 120+/-5OCL/cm(2), P<0.05, comparable with gld mice (99+/-21OCL/cm(2)), while the number of osteoblast colonies did not change. After four weeks, number of OCL cells formed from the bone marrow of B6 parabiotic mice was still similar to the number of OCL cells in their gld counterparts (150+/-18 and 131+/-24OCL/cm(2), respectively). In addition, the number of osteoblast colonies in B6 members of B6-gld parabiotic pairs increased (from 6+/-2 to 18+/-1colonies/cm(2), P<0.05) thus resembling the cell cultures of gld mice (18+/-1colonies/cm(2)). Taken together, these data show that the circulation of cells, including dn T lymphocytes established by parabiosis confers the osteoclast and osteoblast phenotype of gld to wild-type animals.  相似文献   

2.
Circulating autoantibodies against dsDNA and chromatin are a characteristic of systemic lupus erythematosus in humans and many mouse models of this disease. B cells expressing these autoantibodies are normally regulated in nonautoimmune-prone mice but are induced to secrete Abs following T cell help. Likewise, anti-chromatin autoantibody production is T cell-dependent in Fas/Fas ligand (FasL)-deficient (lpr/lpr or gld/gld) mice. In this study, we demonstrate that Th2 cells promote anti-chromatin B cell survival and autoantibody production in vivo. FasL influences the ability of Th2 cells to help B cells, as Th2-gld/gld cells support higher titers of anti-chromatin Abs than their FasL-sufficient counterparts and promote anti-chromatin B cell participation in germinal centers. Th1 cells induce anti-chromatin B cell germinal centers regardless of FasL status; however, their ability to stimulate anti-chromatin Ab production positively correlates with their level of IFN-gamma production. This distinction is lost if FasL-deficient T cells are used: Th1-gld/gld cells promote significant titers of anti-chromatin Abs regardless of IFN-gamma production levels. Thus, FasL from effector T cells plays an important role in determining the fate of anti-chromatin B cells.  相似文献   

3.
We investigated the bone phenotype of mice with generalized lymphoproliferative disorder (gld) due to a defect in the Fas ligand-mediated apoptotic pathway. C57BL/6-gld mice had greater whole body bone mineral density and greater trabecular bone volume than their wild-type controls. gld mice lost 5-fold less trabecular bone and had less osteoclasts on bone surfaces after ovariectomy-induced bone resorption. They also formed more bone in a model of osteogenic regeneration after bone marrow ablation, had less osteoclasts on bone surfaces and less apoptotic osteoblasts. gld and wild-type mice had similar numbers of osteoclasts in bone marrow cultures, but marrow stromal fibroblasts from gld mice formed more alkaline phosphatase-positive colonies. Bone diaphyseal shafts and bone marrow stromal fibroblasts produced more osteoprotegerin mRNA and protein than wild-type mice. These findings provide evidence that the disturbance of the bone system is a part of generalized lymphoproliferative syndrome and indicates the possible role of osteoprotegerin as a regulatory link between the bone and immune system.  相似文献   

4.
Adult skeletal muscle tissue has a uniquely robust capacity for regeneration, which gradually declines with aging or is compromised in muscle diseases. The cellular mechanisms regulating adult myogenesis remain incompletely understood. Here we identify the cytokine tumor necrosis factor superfamily member 14 (Tnfsf14) as a positive regulator of myoblast differentiation in culture and muscle regeneration in vivo. We find that Tnfsf14, as well as its cognate receptors herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR), are expressed in both differentiating myocytes and regenerating myofibers. Depletion of Tnfsf14 or either receptor inhibits myoblast differentiation and promotes apoptosis. Our results also suggest that Tnfsf14 regulates myogenesis by supporting cell survival and maintaining a sufficient pool of cells for fusion. In addition, we show that Akt mediates the survival and myogenic function of Tnfsf14. Importantly, local knockdown of Tnfsf14 is found to impair injury-induced muscle regeneration in a mouse model, affirming an important physiological role for Tnfsf14 in myogenesis in vivo. Furthermore, we demonstrate that localized overexpression of Tnfsf14 potently enhances muscle regeneration, and that this regenerative capacity of Tnfsf14 is dependent on Akt signaling. Taken together, our findings reveal a novel regulator of skeletal myogenesis and implicate Tnfsf14 in future therapeutic development.Mature skeletal muscle tissue contains a resident population of stem cells that imparts a great capacity for regeneration. Upon injury, these quiescent satellite cells are reactivated and begin to proliferate.1, 2 Effective myogenesis depends on the daughter myoblasts successfully differentiating and fusing with each other to regenerate the characteristic multinucleated skeletal myofibers. This involves a number of highly regulated steps, including activation of myogenic genes, migration, cell–cell adhesion and alignment, and finally membrane fusion.3, 4, 5 The fundamental principles underlying each step are well-conserved across species.6 Pathologies may result from dysregulation of these processes, including the suite of muscular dystrophies, cachexia and sarcopenia. However, the complex signaling mechanisms underlying skeletal myogenesis are still not fully understood.It has long been accepted that the secreted factors influencing muscle cell regeneration in vivo are largely of immune cell origin; indeed, immune cells have been reported to reach concentrations over 100 000 cells/mm3 in regenerating muscle tissue.7 Recently, however, muscle cells are being revealed as prolific secretors of a wide variety of cytokines and growth factors,8, 9, 10, 11 including several that attract immune cells to regenerating muscle.7 Secretome studies show that myoblasts secrete different factors during proliferation than during differentiation, and even at different time points throughout differentiation.8, 10, 11 Another study identified numerous chemokine mRNAs expressed by differentiating myoblasts, which may be involved in regulating cell migration during myogenesis.9 However, functions of the newly identified muscle-secreted cytokines are mostly unexplored. Using RNAi, we conducted the first functional screen of cytokines for their impact on myogenic differentiation in C2C12 myoblasts, which allowed us to identify potential regulators of myogenesis in distinct functional groups.12 These results suggest the intriguing possibility that muscle cell-secreted proteins have a previously under-appreciated role in modulating muscle development and regeneration.The function of cytokines in myogenesis is relevant to our understanding of not only basic muscle physiology, but also the diseases that negatively affect the health of muscle tissue, such as cachexia. Cachexia is characterized by extreme wasting of lean body mass and often occurs with an underlying chronic illness, such as cancer or congestive cardiac failure.13 Muscle atrophy during cachexic states ultimately stems from ubiquitin-mediated breakdown of myofibrils.14 Significantly, a well-documented association exists between cachexia and the dysregulation of cytokines, most notably the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα), interleukin-1 (IL-1) and interleukin-6 (IL-6).14, 15Tumor necrosis factor superfamily member 14 (Tnfsf14), also known as LIGHT (homologous to lymphotoxins, shows inducible expression, and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator (HVEM), a receptor expressed by T lymphocytes), exists in two main forms: a type II transmembrane glycoprotein that projects extracellularly, and a soluble cytokine formed by cleavage of the extracellular portion of the protein off of the cell membrane.16 Through its receptors in the TNF receptor (TNFR) superfamily, HVEM (TNFRSF14) and lymphotoxin β receptor (LTβR), Tnfsf14 signaling is involved in lymphoid organ development and organization, as well as innate and adaptive immune responses.17, 18, 19 In recent years, Tnfsf14 has also emerged as a promising candidate for cancer immunotherapy.20Tnfsf14 regulates cell survival and apoptosis in lymphocytes and tumor cells, and the cellular context determines whether Tnfsf14 is pro-survival or pro-apoptosis.20, 21, 22 Neither the expression nor the function of Tnfsf14 or its receptors has been reported in skeletal muscles. Our current study uncovers Tnfsf14 as a critical regulator of myoblast differentiation and muscle regeneration by governing myoblast survival, and implicates Tnfsf14 in potential therapeutic development for maintenance of muscle health.  相似文献   

5.
The role of mouse liver NK1.1 Ag(+) T (NKT) cells in the antitumor effect of alpha-galactosylceramide (alpha-GalCer) has been unclear. We now show that, whereas alpha-GalCer increased the serum IFN-gamma concentration and alanine aminotransferase activity in NK cell-depleted C57BL/6 (B6) mice and B6-beige/beige mice similarly to its effects in control B6 mice, its enhancement of the antitumor cytotoxicity of liver mononuclear cells (MNCs) was abrogated. Depletion of both NK and NKT cells in B6 mice reduced all these effects of alpha-GALCER: Injection of Abs to IFN-gamma also inhibited the alpha-GalCer-induced increase in antitumor cytotoxicity of MNCS: alpha-GalCer induced the expression of Fas ligand on NKT cells in the liver of B6 mice. Whereas alpha-GalCer did not increase serum alanine aminotransferase activity in B6-lpr/lpr mice and B6-gld/gld mice, it increased the antitumor cytotoxicity of liver MNCS: The alpha-GalCer-induced increase in survival rate apparent in B6 mice injected intrasplenically with B16 tumor cells was abrogated in beige/beige mice, NK cell-depleted B6 mice, and B6 mice treated with Abs to IFN-gamma. Depletion of CD8(+) T cells did not affect the alpha-GalCer-induced antitumor cytotoxicity of liver MNCs but reduced the effect of alpha-GalCer on the survival of B6 mice. Thus, IFN-gamma produced by alpha-GalCer-activated NKT cells increases both the innate antitumor cytotoxicity of NK cells and the adaptive antitumor response of CD8(+) T cells, with consequent inhibition of tumor metastasis to the liver. Moreover, NKT cells mediate alpha-GalCer-induced hepatocyte injury through Fas-Fas ligand signaling.  相似文献   

6.
The lprcg gene is the novel mutation at the lpr locus characterized by its complementary to the gld gene in induction of lymphoproliferation in the mouse. Because of the potential usefulness of mice with this mutation in studies on the interrelationship between lpr and gld, we were urged to characterize the lymphoproliferative disease developing in (CBA/K1Jms-lprcg/lprcg x C3H/HeJ-gld/gld) F1 hybrid (lprcg-gld) mice. Despite the milder lymphadenopathy in the lprcg-gld mice, the expanding lymph node cells showed the same surface marker pattern as that in C3H/HeJ-lpr/lpr, C3H/HeJ-gld/gld, and CBA/K1Jms-lprcg/lprcg mice, characterized by the positivity for Thy-1, B220, Ly-6, and Ly-24, and the negativity for L3T4, Lyt-2 (hence designated double-negative cells), and sIg. Furthermore, these cells proved to be of a T-cell lineage based on the rearrangement of the TCR beta-chain gene, the same as the already known double-negative cells. Noticeably, in lprcg-gld mice, serum IgG and autoantibodies of the IgG class were not elevated at an early age but were slightly elevated at an advanced age despite early elevation of the serum IgM and IgM autoantibodies. These results suggest that the lymphoproliferative mice carrying lprcg and gld genes in a heterozygous state will serve as a new tool for inquiring into the interrelationship among lpr, gld, and lprcg.  相似文献   

7.
Mice homozygous for the Fasl(gld/gld) mutation cannot initiate apoptosis via the Fas/Fasl pathway and develop an autoimmune disease characterized by the accumulation of CD4(-)/CD8(-) (DN) T cells and a progressive T cell anergy. These DN T cells express a high-molecular-weight isoform of the membrane PTPase CD45 (B220). We have produced a Fasl(gld/gld) mouse strain with only one functional CD45 allele (CD45(+/-), Fasl(gld/gld)) in order to explore the role that CD45 plays in the lymphoaccumulation and proliferative capacity of the DN T cells. In contrast to CD45(+/+), Fasl(gld/gld) mice, CD45(+/-), Fasl(gld/gld) mice display a 10-fold reduction in the DN T cell population and have decreased levels of anti-DNA antibodies and total serum Ig. However, enriched DN T cell populations remain unresponsive to mitogenic stimulation, but do display altered patterns of tyrosine phosphorylation. These data indicate that CD45 is essential to the accumulation of DN T cells in Fasl(gld/gld) mice and implicate CD45 as a component of the process of deletion that normally governs the composition of the T cell population.  相似文献   

8.
Mice homozygous for lpr and gld develop profound lymphadenopathy characterized by the expansion of two unusual T cell subsets, a predominant Ly-5(B220)+ CD4- CD8- double negative (DN) population and a minor CD4 dull+ Ly-5(B220)+ population. The mechanisms promoting lymphoproliferation are unknown, but one possibility is a abnormality in the production of cytokines that regulate T cell growth. In the present report, unfractionated LN cells and sorted T cell subsets from C3H-lpr, -gld, and -+/+ mice were compared for spontaneous and induced secretion of a spectrum of lymphokines. In addition, CD4+, CD4 dull+ Ly-5(B220)+, and DN T cells were examined for expression of CD3 epsilon, TCR-alpha/beta heterodimers, Ly-6C, and CD44 and for proliferative responses to immobilized anti-TCR mAb and cofactors. These studies revealed that sorted DN T cells did not secrete IL-3, IL-4, IL-5, IL-6, GM-CSF, TNF-alpha, or IFN-gamma spontaneously or after TCR-alpha/beta cross-linking. In contrast, stimulated unfractionated lpr and gld LN cells proliferated strongly and secreted high levels of IFN-gamma and TNF-alpha and low levels of IL-3, IL-4, and IL-6. Despite a 5- to 10-fold deficit in the frequency of CD4+ and CD8+ T cells, cytokine secretion by lpr and gld LN generally exceeded that of +/+ LN. Comparisons of cytokine secretion by stimulated CD4+ T cells revealed that +/+, lpr, and gld CD4+ Ly-5(B220)- T cells proliferated strongly, but only lpr and gld cells produced significant levels of IFN-gamma. The lpr and gld CD4+ T cells also produced higher levels of TNF-alpha and IL-2 than +/+ cells. In contrast to normal CD4+ T cells, lpr and gld CD4+ Ly-5(B220)+ T cells proliferated weakly and did not secrete TNF-alpha, IL-2, or, in most experiments, IFN-gamma after stimulation. Phenotypic studies of T cell subsets revealed that unstimulated lpr and gld CD4+ Ly-5(B220)- T cells express significantly higher levels of CD44 than +/+ CD4+ T cells. In addition, CD4 dull+ Ly-5(B220)+ cells closely resembled DN T cells in size and expression of TCR-alpha/beta, CD3epsilon, CD44, and Ly-6C. Since elevated CD44 expression is generally associated with T cell activation and only previously activated normal CD4+ T cells produce high levels of IFN-gamma in vitro, our data suggest that lpr and gld CD4+ Ly-5(B220)- T cells contain a higher than normal proportion of primed or memory T cells and thus may be polyclonally activated in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
MRL mice bearing the lpr (Fas) or gld (Fas ligand) mutation, MRL-Fas(lpr) or MRL-FasL(gld), respectively, develop arthritis similar to rheumatoid arthritis, but C3H and C57BL/6 mice bearing such mutations do not. In MRL-Fas(lpr) mice, agalactosylated oligosaccharides in serum IgG increase significantly in comparison to MRL-+/+ mice without arthritis. In this study, an increased level of agalactosylation in IgG, as compared to MRL-+/+, was found in both MRL-Fas(lpr) and MRL-FasL(gld) mice. In contrast, the incidence of IgG without galactose was comparable among C3H-Fas(lpr), C3H-FasL(gld), and C3H-+/+ mice as well as between C57BL/6-Fas(lpr) and C57BL/6-+/+ mice. These results suggest that the increase in agalactosylated IgG and the development of arthritis in MRL-Fas(lpr) and MRL-FasL(gld) mice are controlled by the MRL genetic background.  相似文献   

10.
C3H/HeJ-gld/gld(C3H/gld) mice have been shown to develop massive lymphadenopathy with autoimmunity. In this study, we tested whether C3H/gld-IgG supports the growth of the IL-3-dependent cell line, FDC-P2/185-4. Serum IgG from C3H/gld mice stimulated FDC-P2/185-4 cells to proliferate. On the other hand, IgG from C3H/HeJ-+/+ did not show such activity. This activity increased with age in both sexes of C3H/gld mice. It was suggested that a monomeric IgG component was responsible for the proliferative activity of C3H/gld mouse sera. The cell-induced growth required Fc gamma receptors on FDC-P2/185-4 cells. FDC-P2/185-4 cells stimulated with C3H/gld-IgG, secreted IL-3, and grew by themselves, indicating an autocrine mechanism. Thus, cytokines produced by serum IgG may play an important role in the development of disease in mice bearing the autosomal recessive mutation gld.  相似文献   

11.
The pro-inflammatory cytokine TNF is essential for a protective immune response to some but not all strains of Leishmania major. TNF-deficient mice of a resistant genetic background succumbed rapidly to an infection with L. major BNI. Another member of the TNF superfamily, Fas ligand (FasL), has also been reported to be critical for the immune response to L. major. To test the relative importance of TNF versus FasL for the control of L. major BNI, we infected wildtype C57BL/6 (B6.WT), B6.TNF(-/-), B6.gld and C57BL/6.gld x TNF(-/-) (B6.gld.TNF(-/-)) double-negative mice. Visceral, fatal disease was only observed in B6.TNF(-/-) mice, but not in B6 gld mice. The course of infection and the immune response of B6.gld.TNF(-/-) mice were similar to those of B6.TNF(-/-) mice. B6.gld.TNF(-/-) mice had a high tissue parasite burden and expressed prominent amounts of inducible nitric oxide synthase (iNOS) in the skin, the lymph nodes (LN) and the spleen as previously reported for B6.TNF(-/-) mice, whereas the tissue parasite load and the iNOS expression of B6.gld mice resembled that of B6.WT controls. Neither the TNF- nor the FasL-deficiency exerted a detectable intrinsic effect on the proliferation of T cells. Thus, TNF, but not FasL is essential for the control of L. major BNI. The discrepancy between these and other published data are most likely due to the use of different strains of the pathogen.  相似文献   

12.
The joggle mouse is a recessive ataxic mutant carrying an unknown mutation in a C3H/He (C3H)-derived chromosomal segment. Taking advantage of the mouse genome database, we selected 127 DNA microsatellite markers showing heterozygosity between C3H and C57BL/6J (B6) and a first round of screening for the joggle mutation was performed on B6-jog/+ partial congenic mice (N4). We identified 4 chromosomal regions in which 13 microsatellite markers show heterozygosity between C3H and B6. Then, we analyzed the genotype of these 4 chromosomal regions in mice that showed the joggle phenotype and mapped the jog locus between markers D6Mit104 (111.4 Mb) and D6Mit336 (125.1 Mb) (an interval of 13.7 Mb) on chromosome 6. By using a partial congenic strain together with the mouse genome database, we successfully mapped the chromosomal localization of the jog locus much more efficiently than by conventional linkage analysis.  相似文献   

13.
In gld mice, CD4 and 8-double-negative (DN) T cells as well as naive and memory-phenotype T cells accumulate in the peripheral lymphoid organs. Although Fas ligand (L) defect accounts for the progressive accumulation of abnormal DN T cells, the existence of other mechanisms which may be involved in the defective homeostasis in gld mice has been unclear. In this study, we analyze T-cell homeostasis in gld mice using adoptive transfer systems. It was shown that a gld, but not C57BL/6 (B6), environment led to augmented proliferation of B6 T cells transferred without up-regulation of CD69. Thus, the augmented T-cell proliferation seemed to result from mal-homeostatic proliferation even in the presence of a large number of recipient T cells. T cells from lpr mice showed no significant proliferation in the B6 environment, suggesting that the absence of Fas-Fas L interaction was not responsible for the mal-homeostatic proliferation. Although similar levels of IL-7 mRNA were detected in gld and B6 spleens, the intensity of CD127 and the proportion of CD127+ cells in the T cells were significantly lower in gld mice than in B6 mice, suggesting that IL-7 excess in a gld environment is responsible for the abnormal proliferation of transferred T cells. The administration of anti-CD127 antibody inhibited the proliferation of transferred lymphocytes. Thus, IL-7-dependent proliferation seems to be involved in the abnormal proliferation of lymphocytes in gld recipients.  相似文献   

14.
Cross-linking of cell surface Ly-6C molecules with the 6C3 rat monoclonal antibody (MAb) followed by anti-rat immunoglobulin antibody acts in concert with phorbol myristate acetate (PMA) as a potent mitogenic stimulus for normal T cells. Specificity of this stimulation was demonstrated by its absence in T cells from NZB, NOD, or STb/J mice which lack the 6C3 determinant. In 6C3+ normal strains, the extent of 6C3-mediated stimulation varied, depending on the level of 6C3 antigen expression. Analysis of this stimulation in purified T cell subsets revealed that in Ly-6.1 strains (e.g., BALB/c, CBA/J), Lyt-2+ cells responded, but not L3T4+ cells, whereas in Ly-6.2 strains (e.g., C57BL/6, MRL-+/+), both subsets produced IL 2 and proliferated, although with different kinetics. Moreover, in adult MRL-+/+ mice, the minor Lyt-2-/L3T4- subset from the lymph nodes gave low responses to 6C3 cross-linking, whereas that from the thymus reacted strongly. Stimulation via Ly-6C therefore provides a pathway for differential activation of normal T cells. In contrast, the expanding population of Lyt-2-/L3T4- T cells from lpr/lpr or gld/gld mice did not proliferate in response to 6C3 antigen cross-linking plus PMA despite high levels of 6C3 antigen expression. Responsiveness of lpr/lpr T cells could not be restored with IL 1, IL 2, or both. These T cells also failed to be triggered by conjunction of PMA with either Thy-1 antigen cross-linking or concanavalin A. Moreover, they were not stimulated, in the presence of PMA, by doses of ionomycin that were optimal for normal T cells, but did respond to higher ionomycin concentrations (2 micrograms/ml), and this response was not altered by Ly-6C cross-linking. It is concluded that the Ly-6C pathway of T cell activation is not functional in the aberrant lpr/lpr (and gld/gld) T cells, and that this defect may reflect abnormalities of intracellular signaling.  相似文献   

15.
An interspecific backross was used to define a high resolution linkage map of mouse Chromosome (Chr) 1 and to analyze the segregation of the generalized lymphoproliferative disease (gld) mutation. Mice homozygous for gld have multiple features of autoimmune disease. Analysis of up to 428 progeny from the backcross [(C3H/HeJ-gld x Mus spretus)F1 x C3H/HeJ-gld] established a map that spans 77.6 cM and includes 56 markers distributed over 34 ordered genetic loci. The gld mutation was mapped to a less than 1 cM segment on distal mouse Chr 1 using 357 gld phenotype-positive backcross mice. A second backcross, between the laboratory strains C57BL/6J and SWR/J, was examined to compare recombination frequency between selected markers on mouse Chr 1. Significant differences in crossover frequency were demonstrated between the interspecific backcross and the inbred laboratory cross for the entire interval studied. Sex difference in meiotic crossover frequency was also significant in the laboratory mouse cross. Two linkage groups known to be conserved between segments of mouse Chr 1 and the long arm of human Chrs 1 and 2 where further defined and a new conserved linkage group was identified that includes markers of distal mouse Chr 1 and human Chr 1, bands q32 to q42.  相似文献   

16.
CD45R/B220 antigen (B220) is a common mouse panB-cell marker used for paraffin-embedded tissues. However, antiB220 has limited specificity in diagnostic pathology because the B220 antigen is expressed on subsets of cytotoxic T lymphocytes and natural killer cells, on plasmacytic dendritic cells, and on T lymphocytes of mice with the lymphoproliferative disorder associated with Fas (lymphoproliferative mutant mouse, B6.MRL-Fas(lpr/J)) or Fas ligand (generalized lymphoproliferative disease mutant mouse, C3H/ HeJ-Fasl(gld/J) or B6Smn.C3-Fasl(gld/J)). In addition, mouse B lymphocytes vary in the amount of B220 expressed, and some subsets of mouse B lymphocytes do not express B220 at all. In comparison, Pax5 expression (detected by immunohistochemistry using antiPax5) offers greater specificity and sensitivity because of its earlier expression during B-cell differentiation, its ability to detect all committed B cells, and its restriction to the B-cell lineage. Here we describe the use of an antibody to human Pax5 in diagnostic pathology with formalin-fixed, paraffin-embedded mouse tissue.  相似文献   

17.
The course of mouse cytomegalovirus (MCMV) infection was compared between mutant C57BL/6 (B6) mice deficient in either perforin (perf-/-), or perforin, granzyme A and B (perfxgzmAxB-/-), and B6 gld mice lacking functionally active Fas ligand to elucidate the contribution of the two main cytolytic pathways in the early control of MCMV infection. At 15 and 30 days post infection (p.i.) virus titers were elevated in salivary glands of perf-/- and perfxgzmAxB-/-, but almost undetectable in those of mutant gld and C57BL/6 wild-type mice. No virus was detectable in lung and spleen tissues of the mutant or B6 mice at the time points tested. At 15 days p.i., scanty lymphocytic periductal infiltration was seen in salivary glands of perf-/- and perfxgzmAxB-/; these pathological alterations were minimal at 30 days p.i.. In contrast, no pathological alterations were seen in the respective organs of infected B6 and gld mice at the two time points p.i.. At 15 days p.i., reactive follicles were observed in the white pulp of spleen tissues from both mutant and B6 mice, but at 30 days p.i. only in those of mutant mice. No inflammatory responses were seen in the lung tissues of any of the four mouse strains tested. Together with previous observations (Riera et al.. 2000), the results demonstrate that both perforin and granzymes A/B, but not the FasL/Fas system are critical for viral elimination in salivary glands during the acute phase of infection. However, for the long-term control of MCMV infection, neither of the two cytolytic pathways seem to be necessary.  相似文献   

18.
A PCR-RFLP assay for genotyping at the mouse leptin receptor (Lepr(db)) mutation site was developed using modified primers. The first modified primer creates an AccI restriction site in the mutant Lepr(db) allele to distinguish between the Lepr(db) and Lepr+ alleles whereas the second modified primer creates another AccI site in both alleles to serve as a control for restriction enzyme digestion. The assay is robust and works efficiently on unpurified lysates of mouse tissues and can be applied at any age of the animal. The assay may be used as a diagnostic tool for maintenance of stocks, introgression or other types of crosses involving the Lepr(db) mutation.  相似文献   

19.
M F Seldin  G D Kruh 《Genomics》1989,4(2):221-223
A human Abelson related gene (ABLL) cDNA clone was used to detect restriction fragment length polymorphisms (RFLPs) on mouse Southern blots. Abll was mapped to mouse chromosome 1 by analysis of segregation with other distal chromosome 1 genetic polymorphisms by using a panel of DNAs from [(C3H/HeJ-gld/gld x Mus spretus) F1 x C3H/HeJ-gld/gld] interspecific backcross mice. The data indicate the following gene order: (centromere)-CD45-6.5 cM-Lamb-2-1 cM-Abll-2 cM-At-3. The results extend the analysis of a large conserved linkage group spanning nearly 30 cM on distal mouse chromosome 1 syntenic with human chromosome 1q21-32. Within this linkage group similar relative positions have been characterized in both species for C4BP, REN, CD45, LAMB2, ABLL, AT3, APOA2, and SPTA.  相似文献   

20.
HSV-1 infection of the cornea leads to a potentially blinding immunoinflammatory lesion of the cornea, termed herpetic stromal keratitis. It has also been shown that one of the factors limiting inflammation of the cornea is the presence of Fas ligand (FasL) on corneal epithelium and endothelium. In this study, the role played by FasL expression in the cornea following acute infection with HSV-1 was determined. Both BALB/c and C57BL/6 (B6) mice with HSV-1 infection were compared with their lpr and gld counterparts. Results indicated that mice bearing mutations in the Fas Ag (lpr) displayed the most severe disease, whereas the FasL-defective gld mouse displayed an intermediate phenotype. It was further demonstrated that increased disease was due to lack of Fas expression on bone marrow-derived cells. Of interest, although virus persisted slightly longer in the corneas of mice bearing lpr and gld mutations, the persistence of infectious virus in the trigeminal ganglia was the same for all strains infected. Further, B6 mice bearing lpr and gld mutations were also more resistant to virus-induced mortality than were wild-type B6 mice. Thus, neither disease nor mortality correlated with viral replication in these mice. Collectively, the findings indicate that the presence of FasL on the cornea restricts the entry of Fas(+) bone marrow-derived inflammatory cells and thus reduces the severity of HSK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号