首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene duplication, arising from region-specific duplication or genome-wide polyploidization, is a prominent feature in plant genome evolution. Understanding the mechanisms generating duplicate gene copies and the subsequent dynamics among gene duplicates is vital because these investigations shed light on regional and genome-wide aspects of evolutionary forces shaping intra- and interspecific genome contents, evolutionary relationships, and interactions. This review discusses recent gene duplication analyses in plants, focusing on the molecular and evolutionary dynamics occurring at three different timescales following duplication: (1). initial establishment and persistence of cytotypes, (2). interactions among duplicate gene copies, and (3). longer term differentiation between duplicated genes. These relative time points are presented in terms of their potential adaptive significance and impact on plant evolutionary genomics research.  相似文献   

2.
3.

Background:  

The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions.  相似文献   

4.
Leucine-rich repeat (LRR) receptor-like kinases (RLKs), evolutionarily related LRR receptor-like proteins (RLPs) and receptor-like cytoplasmic kinases (RLCKs) have important roles in plant signaling, and their gene subfamilies are large with a complicated history of gene duplication and loss. In three pairs of closely related lineages, including Arabidopsis thaliana and A. lyrata (Arabidopsis), Lotus japonicus, and Medicago truncatula (Legumes), Oryza sativa ssp. japonica, and O. sativa ssp. indica (Rice), we find that LRR RLKs comprise the largest group of these LRR-related subfamilies, while the related RLCKs represent the smal est group. In addition, comparison of orthologs indicates a high frequency of reciprocal gene loss of the LRR RLK/LRR RLP/RLCK subfamilies. Furthermore, pairwise comparisons show that reciprocal gene loss is often associated with lineage-specific duplication(s) in the alternative lineage. Last, analysis of genes in A. thaliana involved in development revealed that most are highly conserved orthologs without species-specific duplication in the two Arabidopsis species and originated from older Arabidopsis-specific or rosid-specific duplications. We discuss potential pitfal s related to functional prediction for genes that have undergone frequent turnover (duplications, losses, and domain architecture changes), and conclude that prediction based on phylogenetic relationships wil likely outperform that based on sequence similarity alone.  相似文献   

5.
A large number of group I introns were discovered in coding regions of small and large subunits of nuclear ribosomal RNA genes (SSU rDNA and LSU rDNA) in ascomycetous fungi of the genus CORDYCEPS: From 28 representatives of the genus, we identified in total 69 group I introns which were inserted at any of four specific sites in SSU rDNA and four specific sites in LSU rDNA. These group I introns reached sizes of up to 510 bp, occurred in up to eight sites in the same organism, and belonged to either subgroup IB3 or subgroup IC1 based on their sequence and structure. Introns inserted at the same site were closely related to each other among Cordyceps fungi, whereas introns inserted at different sites were phylogenetically distinct even in the same species. Mapped on the host phylogeny, the group I introns were generally not restricted to a particular lineage, but, rather, widely and sporadically distributed among distinct lineages. When the phylogenetic relationships of introns inserted at the same site were compared with the phylogeny of their hosts, the topologies were generally significantly congruent to each other. From these results, the evolutionary dynamics of multiple group I introns in Cordyceps fungi was inferred as follows: (1) most of the group I introns were already present at the eight sites in SSU and LSU rDNAs of the ancestor of the genus Cordyceps; (2) the introns have principally been immobile and vertically transmitted throughout speciation and diversification of Cordyceps fungi, which resulted in the phylogenetic congruence between the introns at the same site and their hosts; (3) in the course of vertical transmission, the introns have repeatedly been lost in a number of lineages independently, which has led to the present sporadic phylogenetic distribution of the introns; and (4) a few acquisitions of new introns, presumably through horizontal transmission, were identified in the evolutionary history of the genus Cordyceps, while no transpositions were detected. Losses of group I introns in SSU rDNA have occurred at least 27 times in the evolutionary course of the 28 Cordyceps members.  相似文献   

6.
7.
Four mitochondrial mutations are known to block excision of intron I1 of the cob gene in S.cerevisiae. The nucleotide sequence alteration of one of them, M4873, has been determined. It is a deletion of 1 bp in a run of five G's at a distance of 30 to 34 bp upstream to the 3' splice point. Reversion is found to occur by restoration of the run of five G's either by insertion of 1 G (wild type reversion) or by transition A leads to G next to this run of G's (pseudo-wild type reversion). The effect of mutation and reversion on RNA splicing indicates that the run of five G's is of critical importance for intron I1 excision, possibly in participating in the formation of a splice signal with a helical structure. This presumption is confirmed by the observation that this sequence is part of a larger sequence of some 80 bp next to the 3' splice point which is conserved to some extend in the four mitochondrial introns (bI1, aI1, aI2, aI5) that survive after excision as circular RNAs. Most striking is the conservation of this sequence at the level of secondary structure.  相似文献   

8.
The structure of the gene encoding a chicken liver receptor, the chicken hepatic lectin, which mediates endocytosis of glycoproteins has been established. The coding sequence is divided into six exons separated by five introns. The first three exons correspond to separate functional domains of the receptor polypeptide (cytoplasmic tail, transmembrane sequence, and extracellular neck region), while the final three exons encode the Ca(2+)-dependent carbohydrate-recognition domain. These results, as well as computer-assisted multiple sequence comparisons, establish this receptor as the evolutionary homolog of the mammalian asialoglycoprotein receptors. It is interesting that the chicken receptor falls into a subfamily of proteins along with the mammalian asialoglycoprotein receptors, since the saccharide-binding specificity of the chicken receptor resembles more closely that of a different set of calcium-dependent animal lectins, which includes the mannose-binding proteins. The portions of the genes encoding the carbohydrate-recognition domains of these proteins lack introns. The results suggest that divergence of intron-containing and intron-lacking carbohydrate-recognition domains preceded shuffling events in which other functional domains were associated with the carbohydrate-recognition domains. This was followed by further divergence, generating a variety of saccharide-binding specificities.  相似文献   

9.
We examined the gene structure of a set of 2563 Arabidopsis thaliana paralogous pairs that were duplicated simultaneously 20-60 MYA by tetraploidy. Out of a total of 23,164 introns in these genes, we found that 10,004 pairs have been conserved and 578 introns have been inserted or deleted in the time since the duplication event. This intron insertion/deletion rate of 2.7 x 10(-3) to 9.1 x 10(-4) per site per million years is high in comparison to previous studies. At least 56 introns were gained and 39 lost based on parsimony analysis of the phylogenetic distribution of these introns. We found weak evidence that genes undergoing intron gain and loss are biased with respect to gene ontology terms. Gene pairs that experienced at least 2 intron insertions or deletions show evidence of enrichment for membrane location and transport and transporter activity function. We do not find any relationship of intron flux to expression level or G + C content of the gene. Detection of a bias in the location of intron gains and losses within a gene depends on the method of measurement: an intragene method indicates that events (specifically intron losses) are biased toward the 3' end of the gene. Despite the relatively recent acquisition of these introns, we found only one case where we could identify the mechanism of intron origin--the TOUCH3 gene has experienced 2 tandem, partial, internal gene duplications that duplicated a preexisting intron and also created a novel, alternatively spliced intron that makes use of a duplicated pair of cryptic splice sites.  相似文献   

10.
Numerous previous studies have elucidated 2 surprising patterns of spliceosomal intron evolution in diverse eukaryotes over the past roughly 100 Myr. First, rates of recent intron gain in a wide variety of eukaryotic lineages have been surprisingly low, far too low to explain modern intron densities. Second, intron losses have outnumbered intron gains over a variety of lineages. For several reasons, land plants might be expected to have comparatively high rates of intron gain and thus to represent a possible exception to this pattern. However, we report several studies that indicate low rates of intron gain and an excess of intron losses over intron gains in a variety of plant lineages. We estimate that intron losses have outnumbered intron gains in recent evolution in Arabidopsis thaliana (roughly 12.6 times more losses than gains), Oryza sativa (9.8 times), the green alga Chlamydomonas reinhardtii (5.1 times), and the Bigelowiella natans nucleomorph, an enslaved green algal nucleus (2.8 times). We estimate that during recent evolution, A. thaliana and O. sativa have experienced very low rates of intron gain of around one gain per gene per 2.6-8.0 billion years. In addition, we compared 8,258 pairs of putatively orthologous A. thaliana-O. sativa genes. We found that 5.3% of introns in conserved coding regions are species-specific. Observed species-specific A. thaliana and O. sativa introns tend to be exact and to lie adjacent to each other along the gene, in a pattern suggesting mRNA-mediated intron loss. Our results underscore that low intron gain rates and intron number reduction are common features of recent eukaryotic evolution. This pattern implies that rates of intron creation were higher during earlier periods of evolution and further focuses attention on the causes of initial intron proliferation.  相似文献   

11.
There are a large number of ‘non‐family’ (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94 000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae wide, angiosperm specific, monocot specific, dicot specific, and those that were species specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both low‐copy‐number families (LF; 3–10 copies per genome) and high‐copy‐number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g. photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein–protein interaction network revealed that hub proteins with the top 10% most connections were over‐represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.  相似文献   

12.

Background  

The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin) and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns) and lipo-chitin (nodulation factors) in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive.  相似文献   

13.
It has been proposed that intron and genome sizes in birds are reduced in comparison with mammals because of the metabolic demands of flight. To test this hypothesis, we examined the sizes of 14 introns in a nonflying relative of birds, the American alligator (Alligator mississippiensis), and in 19 flighted and flightless birds in 12 taxonomic orders. Our results indicate that a substantial fraction (66%) of the reduction in intron size as well as in genome size had already occurred in nonflying archosaurs. Using phylogenetically independent contrasts, we found that the proposed inverse correlation of genome size and basal metabolic rate (BMR) is significant among amniotes and archosaurs, whereas intron and genome size variation within birds showed no significant correlation with BMR. We show statistically that the distribution of genome sizes in birds and mammals is underdispersed compared with the Brownian motion model and consistent with strong stabilizing selection; that genome size differences between vertebrate clades are overdispersed and punctuational; and that evolution of BMR and avian intron size is consistent with Brownian motion. These results suggest that the contrast between genome size/BMR and intron size/BMR correlations may be a consequence of different intensities of selection for these traits and that we should not expect changes in intron size to be significantly associated with metabolically costly behaviors such as flight.  相似文献   

14.
15.
Identification of recently gained spliceosomal introns would provide crucial evidence in the continuing debate concerning the age and evolutionary significance of introns. A previously published genomic analysis reported to have identified 122 introns that had been gained since the divergence of the nematodes Caenorhabidits elegans and Caenorhabditis briggsae approximately 100 MYA. However, using newly available genomic sequence from additional Caenorhabditis species, we show that 74% (60/81) of the reported gains in C. elegans are present in a C. briggsae relative. This pattern indicates that these introns represent losses in C. briggsae, not gains in C. elegans. In addition, 61% (25/41) of the reported gains in C. briggsae are present in the more distant C. briggsae relative, in a pattern suggesting that additional reported gains in C. elegans and/or C. briggsae may in fact represent unrecognized losses. These results underscore the dominance of intron loss over intron gain in recent eukaryotic evolution, the pitfalls associated with parsimony in inferring intron gains, and the importance of genomic sequencing of clusters of closely related species for drawing accurate inferences about genome evolution.  相似文献   

16.
Oncogenes and tumor suppressor genes (hereafter referred to as "cancer genes") result in cancer when they experience substitutions that prevent or distort their normal function. We examined evolutionary pressures acting on cancer genes and other classes of disease-related genes and compared our results to analyses of genes without known association to disease. We compared synonymous and nonsynonymous substitution rates in 3,035 human genes-approximately 10% of the genome-measuring the intensity of purifying selection on 311 human disease genes, including 122 cancer-related genes. Although the genes examined are similar to nondisease genes in product, expression, function, and pathway affiliation, we found intriguing differences in the selective pressures experienced by cancer genes relative to other (noncancer) disease-related and non-disease-related genes. We found a statistically significant increase in the intensity of purifying selection exerted on cancer genes (the average ratio of nonsynonymous to synonymous substitutions, omega, was 0.079) relative to all other disease-related genes groups (omega = 0.101) and non-disease-related genes (omega = 0.100). This difference indicates a striking increase in selection against nonsynonymous substitutions in oncogenes and tumor suppressor genes. This finding provides insight into the etiology of cancer and the differences between genes involved in cancer and those implicated in other human diseases. Specifically, we found a significant overlap between human oncogenes and tumor suppressor genes and "essential genes," human homologs of mouse lethal genes identified by knockout experiments. This insight may improve our ability to identify cancer-related genes and enhances our understanding of the nature of these genes.  相似文献   

17.
Das S  Nozawa M  Klein J  Nei M 《Immunogenetics》2008,60(1):47-55
Immunoglobulin heavy chains are polypeptides encoded by four genes: variable (IGHV), joining (IGHJ), diversity (IGHD), and constant (IGHC) region genes. The number of IGHV genes varies from species to species. To understand the evolution of the IGHV multigene family, we identified and analyzed the IGHV sequences from 16 vertebrate species. The results show that the numbers of functional and nonfunctional IGHV genes among different species are positively correlated. The number of IGHV genes is relatively stable in teleosts, but the intragenomic sequence variation is generally higher in teleosts than in tetrapods. The IGHV genes in tetrapods can be classified into three phylogenetic clans (I, II, and III). The clan III and/or II genes are relatively abundant, whereas clan I genes exist in small numbers or are absent in most species. The genomic organization of clan I, II, and III IGHV genes varies considerably among species, but the entire IGHV locus seems to be conserved in the subtelomeric or near-centromeric region of chromosome. The presence or absence of specific IGHV clan members and the lineage-specific expansion and contraction of IGHV genes indicate that the IGHV locus continues to evolve in a species-specific manner. Our results suggest that the evolution of IGHV multigene family is more complex than previously thought and that several factors may act synergistically for the development of antibody repertoire. Electronic supplementary materials The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Correct identification of all introns is necessary to discern the protein-coding potential of a eukaryotic genome. The existence of most of the spliceosomal introns predicted in the genome of Saccharomyces cerevisiae remains unsupported by molecular evidence. We tested the intron predictions for 87 introns predicted to be present in non-ribosomal protein genes, more than a third of all known or suspected introns in the yeast genome. Evidence supporting 61 of these predictions was obtained, 20 predicted intron sequences were not spliced and six predictions identified an intron-containing region but failed to specify the correct splice sites, yielding a successful prediction rate of <80%. Alternative splicing has not been previously described for this organism, and we identified two genes (YKL186C/MTR2 and YML034W) which encode alternatively spliced mRNAs; YKL186C/MTR2 produces at least five different spliced mRNAs. One gene (YGR225W/SPO70) has an intron whose removal is activated during meiosis under control of the MER1 gene. We found eight new introns, suggesting that numerous introns still remain to be discovered. The results show that correct prediction of introns remains a significant barrier to understanding the structure, function and coding capacity of eukaryotic genomes, even in a supposedly simple system like yeast.  相似文献   

19.
We have sequenced the mutational changes in eight mutants in the open reading frame of intron 4 of the cob gene on yeast mitochondrial DNA. Three have a cis-acting splicing defect, while the other inactivate a trans-recessive intron domain that specifies a trans-acting splicing factor. From phenotypic evidence, including analyses of the allele-specific extra proteins, we have identified a protein (P27) encoded wholly within the intron that appears to be the intron 4 splicing factor (maturase). The evidence suggests that P27 is a secondary translation product resulting from the proteolytic cleavage of a larger precursor encoded by exon and intron sequences, but an alternative model, in which P27 is a primary translation product, has not been ruled out.  相似文献   

20.
Mitochondrion is a kind of cell organelle known as the engine house of the cells in the performance of the production of energy in the form of ATP, and the regulation of cellular metabolism in programmed cell death. Plant mitochondria are involved in the formation of cytoplasm male sterility and the mechanism of restoration. Its genomes offer useful information in analysis of the evolution dynamics. The mitogenomes (mitochondrial genomes) of 2074A, a cytoplasmic male sterile line of Gossypium harknessii cytoplasm, was sequenced by Solexa strategy and assembled by SOAP de novo. Combined with public data, the sequences of nine mitochondrial functional genes in 20 taxa were used to reconstruct phylogenetic trees and further to demonstrate the variations of mitogenomes in higher plants. The sequence size, genome composition, and the number of genes varied in mitogenomes, while the genes related to oxidative respiratory chain remain conserved. In examined mitogenomes, the number of protein-coding genes of higher plants varied from 24 to 42. And gene conservatism was quite different. Gene gain or loss entirely existed widely; genes insertion and loss of intron (s), and some altered as pseudogenes were checked; loss of tRNAs and insertion of cp-DNA transferring happened frequently; and syntenic gene clusters were found. More than 50 % of intergenic regions were mainly accumulated by repeats and non-coding sequences. The variable mitogenomes existed conservatism, but it demonstrated that the linear relationship was not parallel to that in mitogenomes of different species in evolution. The mitogenome of 2074A harbored 56 functional genes and changed quite a lot in sequences, while there were a few linear gene clusters and conserved flanking sequences of functional genes. Generally, the information was helpful for understanding the results in mitogenome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号