首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic sequences indicates that intron positions are conserved, and suggests that an ancestral catalase gene common to monocots and dicots contained seven introns. Arabidopsis CAT2 has seven introns; both CAT1 and CAT3 have six introns in positions conserved with CAT2, but each has lost a different intron. We suggest the following sequence of events during the evolution of the Arabidopsis catalase gene family. An initial duplication of an ancestral catalase gene gave rise to CAT3 and CAT1. CAT1 then served as the template for a second duplication, yielding CAT2. Intron losses from CAT1 and CAT3 followed these duplications. One subclade of monocot catalases has lost all but the 5''-most and 3''-most introns, which is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a fully spliced mRNA. Following this event of concerted intron loss, the Oryza sativa (rice, a monocot) CAT1 lineage acquired an intron in a novel position, consistent with a mechanism of intron gain at proto-splice sites.  相似文献   

2.
Origin and evolution of spliceosomal introns   总被引:1,自引:0,他引:1  
ABSTRACT: Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded 'introns first' held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers' Reports section.  相似文献   

3.
Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6-7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing.  相似文献   

4.
Numerous previous studies have elucidated 2 surprising patterns of spliceosomal intron evolution in diverse eukaryotes over the past roughly 100 Myr. First, rates of recent intron gain in a wide variety of eukaryotic lineages have been surprisingly low, far too low to explain modern intron densities. Second, intron losses have outnumbered intron gains over a variety of lineages. For several reasons, land plants might be expected to have comparatively high rates of intron gain and thus to represent a possible exception to this pattern. However, we report several studies that indicate low rates of intron gain and an excess of intron losses over intron gains in a variety of plant lineages. We estimate that intron losses have outnumbered intron gains in recent evolution in Arabidopsis thaliana (roughly 12.6 times more losses than gains), Oryza sativa (9.8 times), the green alga Chlamydomonas reinhardtii (5.1 times), and the Bigelowiella natans nucleomorph, an enslaved green algal nucleus (2.8 times). We estimate that during recent evolution, A. thaliana and O. sativa have experienced very low rates of intron gain of around one gain per gene per 2.6-8.0 billion years. In addition, we compared 8,258 pairs of putatively orthologous A. thaliana-O. sativa genes. We found that 5.3% of introns in conserved coding regions are species-specific. Observed species-specific A. thaliana and O. sativa introns tend to be exact and to lie adjacent to each other along the gene, in a pattern suggesting mRNA-mediated intron loss. Our results underscore that low intron gain rates and intron number reduction are common features of recent eukaryotic evolution. This pattern implies that rates of intron creation were higher during earlier periods of evolution and further focuses attention on the causes of initial intron proliferation.  相似文献   

5.
Analysis of evolution of exon-intron structure of eukaryotic genes   总被引:10,自引:0,他引:10  
The availability of multiple, complete eukaryotic genome sequences allows one to address many fundamental evolutionary questions on genome scale. One such important, long-standing problem is evolution of exon-intron structure of eukaryotic genes. Analysis of orthologous genes from completely sequenced genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists. The data on shared and lineage-specific intron positions were used as the starting point for evolutionary reconstruction with parsimony and maximum-likelihood approaches. Parsimony methods produce reconstructions with intron-rich ancestors but also infer lineage-specific, in many cases, high levels of intron loss and gain. Different probabilistic models gave opposite results, apparently depending on model parameters and assumptions, from domination of intron loss, with extremely intron-rich ancestors, to dramatic excess of gains, to the point of denying any true conservation of intron positions among deep eukaryotic lineages. Development of models with adequate, realistic parameters and assumptions seems to be crucial for obtaining more definitive estimates of intron gain and loss in different eukaryotic lineages. Many shared intron positions were detected in ancestral eukaryotic paralogues which evolved by duplication prior to the divergence of extant eukaryotic lineages. These findings indicate that numerous introns were present in eukaryotic genes already at the earliest stages of evolution of eukaryotes and are compatible with the hypothesis that the original, catastrophic intron invasion accompanied the emergence of the eukaryotic cells. Comparison of various features of old and younger introns starts shedding light on probable mechanisms of intron insertion, indicating that propagation of old introns is unlikely to be a major mechanism for origin of new ones. The existence and structure of ancestral protosplice sites were addressed by examining the context of introns inserted within codons that encode amino acids conserved in all eukaryotes and, accordingly, are not subject to selection for splicing efficiency. It was shown that introns indeed predominantly insert into or are fixed in specific protosplice sites which have the consensus sequence (A/C)AG|Gt.  相似文献   

6.
7.
Conservation versus parallel gains in intron evolution   总被引:10,自引:1,他引:9  
Orthologous genes from distant eukaryotic species, e.g. animals and plants, share up to 25–30% intron positions. However, the relative contributions of evolutionary conservation and parallel gain of new introns into this pattern remain unknown. Here, the extent of independent insertion of introns in the same sites (parallel gain) in orthologous genes from phylogenetically distant eukaryotes is assessed within the framework of the protosplice site model. It is shown that protosplice sites are no more conserved during evolution of eukaryotic gene sequences than random sites. Simulation of intron insertion into protosplice sites with the observed protosplice site frequencies and intron densities shows that parallel gain can account but for a small fraction (5–10%) of shared intron positions in distantly related species. Thus, the presence of numerous introns in the same positions in orthologous genes from distant eukaryotes, such as animals, fungi and plants, appears to reflect mostly bona fide evolutionary conservation.  相似文献   

8.
Theories regarding the evolution of spliceosomal introns differ in the extent to which the distribution of introns reflects either a formative role in the evolution of protein-coding genes or the adventitious gain of genetic elements. Here, systematic methods are used to assess the causes of the present-day distribution of introns in 10 families of eukaryotic protein-coding genes comprising 1,868 introns in 488 distinct alignment positions. The history of intron evolution inferred using a probabilistic model that allows ancestral inheritance of introns, gain of introns, and loss of introns reveals that the vast majority of introns in these eukaryotic gene families were not inherited from the most recent common ancestral genes, but were gained subsequently. Furthermore, among inferred events of intron gain that meet strict criteria of reliability, the distribution of sites of gain with respect to reading-frame phase shows a 5:3:2 ratio of phases 0, 1 and 2, respectively, and exhibits a nucleotide preference for MAG GT (positions -3 to +2 relative to the site of gain). The nucleotide preferences of intron gain may prove to be the ultimate cause for the phase bias. The phase bias of intron gain is sufficient to account quantitatively for the well-known 5:3:2 bias in phase frequencies among extant introns, a conclusion that holds even when taxonomic heterogeneity in phase patterns is considered. Thus, intron gain accounts for the vast majority of extant introns and for the bias toward phase 0 introns that previously was interpreted as evidence for ancient formative introns.  相似文献   

9.
Though spliceosomal introns are a major structural component of most eukaryotic genes and intron density varies by more than three orders of magnitude among eukaryotes [1-3], the origins of introns are poorly understood, and only a few cases of unambiguous intron gain are known [4-8]. We utilized population genomic comparisons of three closely related fungi to identify crucial transitory phases of intron gain and loss. We found 74 intron positions showing intraspecific presence-absence polymorphisms (PAPs) for the entire intron. Population genetic analyses identified intron PAPs at different stages of fixation and showed that intron gain or loss was very recent. We found direct support for extensive intron transposition among unrelated genes. A substantial proportion of highly similar introns in the genome either were recently gained or showed a transient phase of intron PAP. We also identified an intron transfer among paralogous genes that created a new intron. Intron loss was due mainly to homologous recombination involving reverse-transcribed mRNA. The large number of intron positions in transient phases of either intron gain or loss shows that intron evolution is much faster than previously thought and provides an excellent model to study molecular mechanisms of intron gain.  相似文献   

10.
In order to understand the molecular evolution of catalase genes in higher plants, we compared the exon-intron structures of 12 genomic sequences from six plant species. It was assumed that the putative single primordial catalase gene had seven introns, because only those catalase genes having this structure are found in the monocotyledonae and dicotyledonae classes. After the evolutionary divergence of monocots from dicots, consecutive duplication of the primordial gene followed by the differential loss of introns occurred in each class to form three (or possibly four in dicots) diverse isozyme genes. In monocots, three ancestral isozyme genes were formed before the divergence of ancestral rice and maize. One of the rice genes, CatA, has an entirely new short intron which was not found in any other plant catalase gene examined. We have investigated the existence of the intron in the CatA homolog in other rice species by polymerase chain reaction (PCR) analysis. One major PCR product was found with the genomic DNAs from O. sativa (indica and japonica types), O. rufipogon and O. glaberrima. DNAs from several accessions of O. longistaminata showed variation in both the number and size of the DNA fragments amplified. PCR analyses and sequencing of the PCR products revealed that there are several CatA homologs having different sequences in some accessions of O. longistaminata. We have extended our study to other species in the Poaceae. The results suggest that the gain of the intron, most likely by insertion of a retroposon, took place in the ancestral genome of rice after its evolutionary divergence from other ancestral cereals such as barley, wheat and oat. Received: 20 November 1997 / Accepted: 5 January 1998  相似文献   

11.
12.
The role of spliceosomal introns in eukaryotic genomes remains obscure. A large scale analysis of intron presence/absence patterns in many gene families and species is a necessary step to clarify the role of these introns. In this analysis, we used a maximum likelihood method to reconstruct the evolution of 2,961 introns in a dataset of 76 ribosomal protein genes from 22 eukaryotes and validated the results by a maximum parsimony method. Our results show that the trends of intron gain and loss differed across species in a given kingdom but appeared to be consistent within subphyla. Most subphyla in the dataset diverged around 1 billion years ago, when the "Big Bang" radiation occurred. We speculate that spliceosomal introns may play a role in the explosion of many eukaryotes at the Big Bang radiation.  相似文献   

13.
14.
Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.  相似文献   

15.
Irimia M  Roy SW 《PLoS genetics》2008,4(8):e1000148
The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3' consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3' splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures.  相似文献   

16.
Although spliceosomal introns are present in all characterized eukaryotes, intron numbers vary dramatically, from only a handful in the entire genomes of some species to nearly 10 introns per gene on average in vertebrates. For all previously studied intron-rich species, significant fractions of intron positions are shared with other widely diverged eukaryotes, indicating that 1) large numbers of the introns date to much earlier stages of eukaryotic evolution and 2) these lineages have not passed through a very intron-poor stage since early eukaryotic evolution. By the same token, among species that have lost nearly all of their ancestral introns, no species is known to harbor large numbers of more recently gained introns. These observations are consistent with the notion that intron-dense genomes have arisen only once over the course of eukaryotic evolution. Here, we report an exception to this pattern, in the intron-rich diatom Thalassiosira pseudonana. Only 8.1% of studied T. pseudonana intron positions are conserved with any of a variety of divergent eukaryotic species. This implies that T. pseudonana has both 1) lost nearly all of the numerous introns present in the diatom-apicomplexan ancestor and 2) gained a large number of new introns since that time. In addition, that so few apparently inserted T. pseudonana introns match the positions of introns in other species implies that insertion of multiple introns into homologous genic sites in eukaryotic evolution is less common than previously estimated. These results suggest the possibility that intron-rich genomes may have arisen multiple times in evolution. These results also provide evidence that multiple intron insertion into the same site is rare, further supporting the notion that early eukaryotic ancestors were very intron rich.  相似文献   

17.
Spliceosomal introns are noncoding sequences that separate exons in eukaryotic genes and are removed from pre-messenger RNAs by the splicing machinery. Their origin has remained a mystery in biology since their discovery because intron gains seem to be infrequent in many eukaryotic lineages. Although a few recent intron gains have been reported, none of the proposed gain mechanisms can convincingly explain the high number of introns in present-day eukaryotic genomes. Here we report on particular spliceosomal introns that share high sequence similarity and are reminiscent of introner elements. These elements multiplied in unrelated genes of six fungal genomes and account for the vast majority of intron gains in these fungal species. Such introner-like elements (ILEs) contain all typical characteristics of regular spliceosomal introns (RSIs) but are longer and predicted to harbor more stable secondary structures. However, dating of multiplication events showed that they degenerate in sequence and length within 100,000 years to eventually become indistinguishable from RSIs. We suggest that ILEs not only account for intron gains in six fungi but also in ancestral eukaryotes to give rise to most RSIs by a yet unknown multiplication mechanism.  相似文献   

18.
19.
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.  相似文献   

20.
Spliceosomal introns are present in almost all eukaryotic genes, yet little is known about their origin and turnover in the majority of eukaryotic phyla. There is no agreement whether most introns are ancestral and have been lost in some lineage or have been gained recently. We addressed this question by analyzing the spatial and temporal distribution of introns in actins of foraminifera, a group of testate protists whose exceptionally rich fossil record permits the calibration of molecular phylogenies to date intron origins. We identified 24 introns dispersed along the sequence of two foraminiferan actin paralogues and actin deviating proteins, an unconventional type of fast-evolving actin found in some foraminifera. Comparison of intron positions indicates that 20 of 24 introns are specific to foraminifera. Four introns shared between foraminifera and other eukaryotes were interpreted as parallel gains because they have been found only in single species belonging to phylogenetically distinctive lineages. Moreover, additional recent intron gain due to the transfer between the actin paralogues was observed in two cultured species. Based on a relaxed molecular clock timescale, we conclude that intron gains in actin took place throughout the evolution of foraminifera, with the oldest introns inserted between 550 and 500 million years ago and the youngest ones acquired less than 100 million years ago. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号