首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes have been proposed to be efficient nanovectors able to deliver genetic or therapeutic cargo into living cells. However, a direct evidence of the molecular mechanism of their translocation across cell membranes is still needed. Here, we report on an extensive computational study of short (5 nm length) pristine and functionalized single-walled carbon nanotubes uptake by phospholipid bilayer models using all-atom molecular dynamics simulations. Our data support the hypothesis of a direct translocation of the nanotubes through the phospholipid membrane. We find that insertion of neat nanotubes within the bilayer is a "nanoneedle" like process, which can often be divided in three consecutive steps: landing and floating, penetration of the lipid headgroup area and finally sliding into the membrane core. The presence of functional groups at moderate concentrations does not modify the overall scheme of diffusion mechanism, provided that their deprotonated state favors translocation through the lipid bilayer.  相似文献   

2.
3.
Ko S  Jang J 《Biomacromolecules》2007,8(1):182-187
Pristine (carboxylated) and aminated polypyrrole nanotubes were successfully fabricated using vapor deposition polymerization with a template. In particular, aminated polypyrrole nanotubes were readily synthesized by modifying the nanotube surface with open polyamine chains. Pristine and aminated polymer nanotubes were used as the transducer to acetic acid vapor. Amino-functionalized nanotubes revealed more enhanced sensitivity than the pristine carboxylated nanotubes with the increasing number of amine spacers due to the increased polymer/analyte partition coefficient and mass uptake of the analyte. Moreover, polyamine-functionalized nanotubes presented a reversible and reproducible response to acetic acid up to 40% sensitivity. The aminated polypyrrole nanotubes demonstrated the potential capability to be excellent transducers for volatile fatty acids in disposable sensors.  相似文献   

4.
Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.  相似文献   

5.
Effects of water activity (aW) and solvent ordering were separately analyzed on the thermal unfolding of lysozyme and alpha-chymotrypsinogen A, and also on the thermal deactivation of yeast alcohol dehydrogenase (YADH) in aqueous solutions with various additives. With the coexistence of additives, water activity was the determinant of the extent of the change in the thermal stability of proteins while solvent ordering was the determinant of the direction of the change. The parameter alpha, determined from the activity coefficient of water, representing the deviation of aW from that of the ideal solution, was useful as a quantitative index of the solvent ordering showing good correlations with the unfolding temperature and enthalpy of lysozyme and alpha-chymotrypsinogen A and also with the thermal deactivation rate constant of YADH at a constant aW. Solvent ordering seemed to affect the thermal stability of proteins mainly through its effect on the intramolecular hydrophobic interaction among amino acid residues in a protein molecule but the contribution of the electrostatic interaction including hydrogen bonding through the change in permittivity of solution was also suggested.  相似文献   

6.
The nitrosamine adsorbed on close-ended and open-ended pristine and Stone-Wales defective (5,5) armchair single-walled carbon nanotubes (SWCNTs) was studied using the B3LYP/6-31G(d) method. Structure optimization of all possible adsorption configurations based on the combination of two nitrosamine (amino- and imino-) isomers and four types of nanotubes was carried out. The most stable configuration for the nitrosamine adsorbed on the (5,5) armchair SWCNTs was found to be dissociative chemisorption. The adsorption energies of the most stable structures of the adsorption complexes of close-ended and open-ended pristine SWCNTs with the imino isomer of nitrosamine were −127.15 and −137.14 kcal mol−1, respectively.  相似文献   

7.
Effects of the water activity (a(w)) and the solvent ordering, as determined by the activity coefficient of water, were investigated on the enzyme kinetics of alcohol dehydrogenase, lysozyme, and beta-galactosidase in various aqueous solutions. The water activity and the solvent ordering were adjusted by addition of electrolytes (NaCl, KCl, CsCl, etc.) or nonelectrolytes (sugars, alcohols, urea, etc.) at various concentrations. Although the enzyme kinetics were strongly dependent on a(w), a(w) was not a complete determinant of the enzyme behavior in aqueous solutions. Enzyme kinetics were also dependent on the solvent ordering. At a fixed a(w), all the enzyme kinetic parameters tested had a good correlation with the solvent ordering parameter as represented by the parameter alpha, an index of the deviation of the water state from the ideal solution, determined from the activity coefficient of water in solutions. Solvent ordering was expected to affect the enzyme kinetics through its effect on the hydrophobic interaction between the enzyme and the substrate and also on the thermal fluctuation.  相似文献   

8.
In order to explore a sensor for detection of toxic hydrogen cyanide (HCN) molecules, interaction of pristine and defected Al-rich aluminum nitride nanotubes (AlNNT) with a HCN molecule has been investigated using density functional theory calculations in terms of energetic, geometric, and electronic properties. It has been found that unlike the pristine AlNNT, the Al-rich AlNNT can effectively interact with the HCN molecule so that its conductivity changes upon the exposure to this molecule. The adsorption energies of HCN on the pristine and defected AlNNTs have been calculated to be in the range of ?0.16 to ?0.62 eV and ?1.75 to ?2.21 eV, respectively. We believe that creating Al-rich defects may be a good strategy for improving the sensitivity of these tubes toward HCN molecules, which cannot be trapped and detected by the pristine AlNNT.  相似文献   

9.
Maksimova  Yu. G.  Bykova  Ya. E.  Zorina  A. S.  Nikulin  S. M.  Maksimov  A. Yu. 《Microbiology》2022,91(4):454-462
Microbiology - The effect of pristine multi-walled carbon nanotubes (MWCNT) on the biofilms of gram-negative bacteria, typical members of the activated sludge community, and gram-positive...  相似文献   

10.
Single-walled aluminum nitride nanotubes (AlNNTs) are introduced as an electronic sensor for detection of sulfur dioxide (SO(2)) molecules based on density functional theory calculations. The proposed sensor benefits from several advantages including high sensitivity: HOMO-LUMO energy gap of the AlNNT is appreciably sensitive toward the presence of SO(2) so that it decreases from 4.11?eV in the pristine tube to 1.01?eV in the SO(2)-adsorbed form, pristine application: this nanotube can detect the SO(2) molecule in its pristine type without manipulating its structure through doping, chemical functionalization, making defect, etc., short recovery time: the adsorption energy of SO(2) molecule is not so large to hinder the recovery of AlNNTs and therefore the sensor will possess short recovery times, and good selectivity: the tube can selectively detect the SO(2) molecule in the presence of several molecules such as H(2)O, CO, NH(3), HCOH, CO(2), N(2), and H(2).  相似文献   

11.
The adsorptions of hydrogen molecule of the Fe?-?doped pristine and Stone?-?Wales defected armchair (5,5) single?-?walled carbon nanotubes (SWCNTs) compared with the pristine SWCNT were investigated by using the density functional theory at the B3LYP/LanL2DZ level. The doping of Fe atom into SWCNTs occurring via an exothermic process was found. The adsorptions of hydrogen molecule on the Fe?-?doped structures of either perfect or SW defected SWCNTs are stronger than on their corresponding undoped structures. The structural and electronic properties of the pristine and SW defected SWCNTs, their Fe?-?doped structures and their hydrogen molecule adsorptions are reported.  相似文献   

12.
Hydration, protons and onset of physiological activities in maize seeds   总被引:1,自引:0,他引:1  
Dry maize ( Zea mays L.) seed components, namely, embryo and endosperm, provide model materials for studies on water-dependent mechanisms in cellular function. We explored the thermodynamics of hydration for both tissues, along with their dielectric behavior, as a function of water content. In addition, we evaluated the direct current (DC) conductivity due to water protons. Our data on embryo tissue show large enthalpic and entropic peaks at water content [h, in g H2O (g dry sampie)−1] around 0.08 g g−1, indicating very tight binding and ordering of water molecules. With increasing water content both enthalpy and entropy decrease, and the completion of primary hydration requires h ∼ 0.26 g g−1. Data for endosperm tissue show the absence of such an enthalpic peak and a reduced degree of ordering for h < 0.10 g g−1. The DC protonic conductivity shows explosive growth above a threshold hydration level hc= 0.082 g g−1 and hc= 0.12 g g−1, for embryo and endosperm, respectively. Protonic conduction can be considered within the framework of a percolation modell characterized by a hydration threshold and by a power law increase in conductivity with further hydration. The critical exponent of the power law is in agreement with theory for a two-dimensional percolative process. This percolative water-assisted behavior reflects the presence of an extended network of water molecules adsorbed on the surface of proteins and/or membranes inside cells. We consider this percolative protonic conduction as being a prerequisite to respiration processes.  相似文献   

13.
14.
Heat conduction in multi-walled carbon nanotubes (MWNTs) was studied using non-equilibrium molecular dynamics simulations. This research focuses on the effects of the multi-wall structure of the MWNTs on the heat conduction. The results show that the thermal conductivity of a MWNT is almost the same as that of the corresponding single-walled carbon nanotubes (SWNTs) rather than much smaller as has been suggested. Thus, the multi-wall structure does not significantly affect the thermal conduction in the MWNTs. Analysis of the temperature profiles and the phonon density of states confirms that there is almost no heat transport between the MWNT layers and that each layer conducts heat nearly independently along parallel channels. This is physically reasonable since the weak inter-wall interactions and large interfacial thermal resistances make the MWNT layers behave like parallel thermal circuits.  相似文献   

15.
Effects of water activity (aW) and solvent ordering were separately analyzed on the thermal unfolding of lysozyme and α-chymotrypsinogen A, and also on the thermal deactivation of yeast alcohol dehydrogenase (YADH) in aqueous solutions with various additives. With the coexistence of additives, water activity was the determinant of the extent of the change in the thermal stability of proteins while solvent ordering was the determinant of the direction of the change. The parameter α, determined from the activity coefficient of water, representing the deviation of aW from that of the ideal solution, was useful as a quantitative index of the solvent ordering showing good correlations with the unfolding temperature and enthalpy of lysozyme and α-chymotrypsinogen A and also with the thermal deactivation rate constant of YADH at a constant aW. Solvent ordering seemed to affect the thermal stability of proteins mainly through its effect on the intramolecular hydrophobic interaction among amino acid residues in a protein molecule but the contribution of the electrostatic interaction including hydrogen bonding through the change in permittivity of solution was also suggested.  相似文献   

16.
The effect of incorporating carbon nanotubes (CNTs) in the gel matrix on the electrophoretic mobility of proteins based on their molecular weight differences was investigated using sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). More specifically, a reduction in standard deviation in the molecular weight calibration plots by 55% in the case of multiwalled carbon nanotubes (MWCNTs) and by 34% in the case of single-walled carbon nanotubes (SWCNTs) compared with that of pristine polyacrylamide gels was achieved after incorporating an insignificant amount of functionalized CNTs into the gel matrix. A mechanism based on a more uniform pore size distribution in CNT modified polyacrylamide gel matrix is proposed. Furthermore, the impact of SWCNTs and MWCNTs on the mobility of proteins in different molecular weight regimes at a given acrylamide concentration offers a tunable gel matrix in terms of the selection of molecular weight ranges of proteins. The robustness and excellent reproducibility of the CNT–PAGE protocol are expected to have a significant impact on the molecular weight determination of newly isolated proteins.  相似文献   

17.
DNA-wrapped multiwalled carbon nanotubes (MWCNTs) were successfully obtained by a simple sonication treatment method. The obtained materials were characterized in detail by Raman spectroscopy and scanning electron microscopy (SEM). An SEM image showed that MWCNTs were dispersed sufficiently and covered entirely with DNA. This resulted in high aqueous solubility of the products, with a stability of more than several months. The interaction between DNA and MWCNTs was confirmed by Raman measurements and was ascribed to the strong π-π interactions between the backbones of DNA and the surface of carbon nanotubes. The cyclic voltammograms showed that the composite exhibited excellent electrochemical properties. Experimental results also revealed that the high dispersion of DNA-assisted MWCNTs presented a better property compared with pristine MWCNTs. This facile method for obtaining water-soluble MWCNTs has great potential application for both bioscience and biotechnology.  相似文献   

18.
In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification results in improved ordering of the perovskite films, which in turn reduces defect/trap density, causing reduced interfacial recombination. This leads to a significant improvement in the open‐circuit voltage from 1.07 eV for pristine NiOx to 1.15 eV for KCl‐treated NiOx, resulting in a power conversion efficiency approaching 21%. Furthermore, the suppression of the ion diffusion in the devices is observed, as evidenced by stable photoluminescence (PL) under illumination and high PL quantum efficiency with alkali chloride treatment, as opposed to the luminescence enhancement and low PL quantum efficiency observed for perovskite on pristine NiOx. The suppressed ion diffusion is also consistent with improved stability of the devices with KCl‐treated NiOx. Thus, it is demonstrated that a simple interfacial modification is an effective method to not only suppress interfacial recombination but also to suppress ion migration in the layers deposited on the modified interface due to improved interface ordering and reduced defect density.  相似文献   

19.
In this study, we use streptavidin (SA) as a model system to study helical protein array formation on lipid nanotubes, an alternative to 2D studies on lipid monolayers. We demonstrate that wild-type and a mutant form of SA form helical arrays on biotinylated lipid nanotubes. 3D maps from helical arrays of wild-type and mutant SA were reconstructed using two different approaches: Fourier-Bessel methods and an iterative single particle algorithm. The maps show that wild-type and mutant streptavidin molecules order differently. The molecular packing arrangements of SA on the surface of the lipid nanotubes differ from previously reported lattice packing of SA on biotinylated monolayers. Helical crystallization on lipid nanotubes presents an alternative platform to explore fundamentals of protein ordering, intermolecular protein interaction and phase behavior. We demonstrate that lipid nanotubes offer a robust and reproducible substrate for forming helical protein arrays which present a means for studying protein structure and structure-function relationships.  相似文献   

20.
Nanotubes are believed to open the road toward different modern fields, either technological or biological. However, the applications of nanotubes have been badly impeded for the poor solubility in water which is especially essential for studies in the presence of living cells. Therefore, water soluble samples are in demand. Herein, the outcomes of Monte Carlo simulations of different sets of multiwall nanotubes immersed in water are reported. A number of multi wall nanotube samples, comprised of pure carbon, pure silicon and several mixtures of carbon and silicon are the subjects of study. The simulations are carried out in an (N,V,T) ensemble. The purpose of this report is to look at the effects of nanotube size (diameter) and nanotube type (pure carbon, pure silicon or a mixture of carbon and silicon) variation on solubility of multiwall nanotubes in terms of number of water molecules in shell volume. It is found that the solubility of the multi wall carbon nanotube samples is size independent, whereas multi wall silicon nanotube samples solubility varies with diameter of the inner tube. The higher solubility of samples containing silicon can be attributed to the larger atomic size of silicon atom which provides more direct contact with the water molecules. The other affecting factor is the bigger inter space (the space between inner and outer tube) in the case of silicon samples. Carbon type multi wall nanotubes appeared as better candidates for transporting water molecules through a multi wall nanotube structure, while in the case of water adsorption problems it is better to use multi wall silicon nanotubes or a mixture of multi wall carbon/ silicon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号